Databoard Developer Manual
Version: 0.6.1
Datatype
In Databoard all values have a type representation, Datatype.java. It is the base abstract class for all concrete type classes (See table below). There is a facade class utility (Datatypes) that provides functions to most of the Datatype library's features.
Class | Description |
---|---|
Datatype | Base class for all data types |
RecordType | Record |
ArrayType | Array - an ordered sequence of elements of one type. |
MapType | Map - an ordered map of keys to values. |
UnionType | Union |
BooleanType,IntType,LongType,FloatType,DoubleType | Primitive and numeric types |
StringType | String |
OptionalType | Optional value |
VariantType | Variant value |
Datatype can be acquired or created using one of the following methods:
Construct new
Constant
Reflection-Read from a Class
Read from string of [].
Datatype type = new DoubleType();
Datatype type = Datatypes.DOUBLE;
Datatype type = Datatypes.getDatatype( Double.class );
Datatypes.addDefinition("type Node = { id : String; children : Node[] }");
Datatype type = Datatypes.getDatatype("Node");
Parsing
Datatypes are parsed using Datatypes.DatatypeRepository
.
Datatypes.addDefinition("type Node = { id : String; children : Node[] }");
Datatype type = Datatypes.getDatatype("Node");
Types are printed to types and definitions with
String type = type.toString();
DatatypeRepository repo = new DatatypeRepository();
repo.add("temp1", type);
String typeDef = repo.toString();
Structure Example
A node is a recursive type. With databoard type system it could be stated as
type Node = {
id : String;
displayNames : LocalizedTexts;
children : Node[];
value : Optional(Variant);
}

A couple of instances with Databoard value notation:
root : Node = {
id = �PI_01�
displayNames = map{ �en� = �Instrument � }
children =
[
{id=�Child�,
displayNames = map{ �en� = �Child�} },
value = 5 : Integer
}
]
value = �<root>� : String
}

Binding
There is a type system, and when developing with java, platform neutral data values can be read from and written to objects. This is the role of a binding, a map from a Java Class to a Datatype.
For instance, take a java.lang.Double. Its instance is the container (private final double value;
) of the data and its Binding (DoubleBinding) is the access (.valueOf()
, .getDouble()
) to the data.
Java Object + Binding = Databoard Value
Bindings have the exact same composition tree structure as its respective Datatype
- structural types have structural Bindings, and primitive types a single binding. To acquire a binding, the developer can use a utility that creates one using Java reflection functions.
Binding binding = Binding.getBinding( Double.class );
Sometimes classes cannot bound using automatic tool, for instance when using 3rd party classes which cannot be modified. The developer must then write binding self by sub-classing on of the 13 base binding classes (There is a base binding class for each Datatype).
Binding binding = new RecordBinding() { ... };
'''org.simantics.databoard.binding''':
Class | Description |
---|---|
DataBinding | Base class for all data Bindings |
RecordBinding | Record |
ArrayBinding | Array - an ordered sequence of elements of one value. |
MapBinding | Map - an ''ordered'' map of keys to values. |
UnionBinding | Union |
BooleanBinding,IntBinding,LongBinding,FloatBinding,DoubleBinding | Primitive and numeric Bindings |
StringBinding | String |
OptionalBinding | Optional value |
VariantBinding | Variant value |
Binding can be acquired or created using one of the following methods:
Constructor
Constant
Reflection-Read from a Class
Created using BindingScheme
Binding binding = new DoubleBinding( doubleType );
Binding binding = new RecordBinding() { ... };
Binding binding = Bindings.DOUBLE;
Binding binding = Binding.getBinding( Double.class );
Binding binding = Binding.getBinding( Datatypes.DOUBLE );
Reflection
'''Data Type and Binding can be read automatically from a Class by utility.'''
Datatype type = Datatypes.getDatatype( Foo.class );
Binding binding = Bindings.getBinding( Foo.class );
Bindings for generics classes can be created by passing arguments.
Binding e = Bindings.getBinding(List.class, String.class);
List<String> list = (List<String>) e.createRandom(5);
Binding binding = Bindings.getBinding( Map.class, Integer.class, Integer.class );
Map<Integer, Integer> value = (Map<Integer, Integer>) binding.createDefault();
Even cascading generics...
Binding e = Bindings.getBinding(List.class, List.class, String.class);
List<List<String>> listList = (List<List<String>>) e.createRandom(5);
'''Classes are RecordTypes'''
class Foo {
public int x, y, z;
}
Is a binding to the following Datatype
type Foo = { x : Integer, y : Integer, z : Integer }
'''There are three types of classes supported, and therefore three ways how objects are constructed.'''
If you create binding for your class with Bindings.getBinding( clazz )
, the class must adhere one of these format. You may have to add annotations such as @Recursive
, @Optional
, @Arguments
.
''Record-like classes:''
class Foo {
public String name;
public Object value;
}
''Immutable classes:''
class Foo {
private String name;
private Object value;
public Foo(String name, Object value) {
this.name = name;
this.value = value;
}
public String getName() {
return name;
}
public Object getValue() {
return value;
}
}
''Bean-like classes:''
class Foo {
private String name;
private Object value;
public void setName(String name) {
this.name = name;
}
public void setValue(Object value) {
this.value = value;
}
public String getName() {
return name;
}
public Object getValue() {
return value;
}
}
'''Static and transient fields are omited:'''
static final long serialVersionUID = -3387516993124229943L;
transient int hashCode;
'''Enumerations are Union Types'''
enum Cars { Ferrari, Porche, Lamborghini, Jaguar }
is interpreted as union type
type Cars = | Ferrari | Porche | Lamborghini | Jaguar
If you cannot modify the class, you have to create binding for it by subclassing base binding classes, e.g. RecordBinding
.
'''Other exceptions:'''
java.lang.Object
isVariant
java.lang.Set<T>
isMap(T, {})
java.lang.TreeSet<T></code> is
Map(T, {})`java.lang.HashSet<T>
isMap(T, {})
. (Note HashSet binding has very low performance.)java.lang.Map<K, V>
isMap(K, V)
.java.lang.TreeMap<K, V>
isMap(K, V)
.java.lang.HashMap<K, V>
isMap(K, V)
. (Note HashMap binding has very low performance.)java.lang.List<T>
isArray(T)
.java.lang.ArrayList<T>
isArray(T)
.java.lang.LinkedList<T>
isArray(T)
.void
is{}
.The stack trace of
Exception.class
is omitted.
Annotations
Java Classes / Fields can be annotated with the following annotations ('''org.simantics.databoard.annotations''').
'''UnionTypes are abstract classes or interfaces with @Union
annotation.'''
@Union({A.class, B.class}) interface Union1 {
}
class A implements Union1 {
public int value;
}
class B implements Union1 {
public String name;
}
'''@Referable
denotes that the class has recursion and is a referable record.'''
public @Referable class Node {
public Node[] children;
}
'''Fields that can have null
value have @Optional
annotation.'''
@Optional String name;
'''String valid values are set with @Pattern
as regular expression. (http://en.wikipedia.org/wiki/Regular_expression)'''
String @Pattern("(19|20)\\d\\d[- /.](0[1-9]|1[012])[- /.](0[1-9]|[12][0-9]|3[01])") date;
type Date = String( Pattern = "(19|20)\d\d[- /.](0[1-9]|1[012])[- /.](0[1-9]|[12][0-9]|3[01])" )
'''String content type is set with a @MIMEType
. (http://en.wikipedia.org/wiki/Mime_type MIME Type)'''
@MIMEType("text/xml") String document;
'''Array size restricted with @Length
.'''
@Length("[0..10]") int[] array;
@Length({"[320]", "[240]"}) int[][] image;
'''Valid numeric range is set with @Range
.'''
@Range("[0..100]") double alpha;
@Range("[0..]" double length;
'''Range
and Length
notation:'''
Exact Value "0"
Exclude all "()"
Unlimited ""
Inclusive range ""
Exclusive range "(0..100)"
Inclusive lower bound and exclusive upper bound "[0..100)"
'''Engineering unit type is given with @Unit.'''
@Unit("km/h") double maxVelocity;
'''The serializer generated with reflection can be overriden with @SpecializedSerializer
'''
@SpecializedSerializer(MySerializer.class)
public class MyRecord {
...
}
Mapping Scheme
A binding scheme associates some data types with a unique binding. The mapping of types to bindings is bijective, there is one binding for each type and vice-versa.
DefaultBindingScheme
is a scheme that converts any datatype to a binding. It prefers java.lang.X
primitives.
| Type | Class |
| ---- | ----- |
| BooleanType
| Boolean.class
|
| ByteType
| Byte.class
|
| FloatType
| Float.class
|
| DoubleType
| Double.class
|
| IntegerType
| Integer.class
|
| LongType
| Long.class
|
| StringType
| String.class
|
| UnionType
| TaggedObject.class
|
| OptionType
| ValueContainer.class
|
| RecordType
| Object[].class
|
| ArrayType
| ArrayList.class
|
| Array(Byte)
| byte[].class
|
| MapType
| TreeMap.class
|
| VariantType
| Variant.class
|
MutableBindingScheme
is a scheme that provides a fully implementing mutable binding for all data types.
The Class mapping for each type is listed below.
{| style="background-color: #e9e9e9; border: 1px solid #aaaaaa; "
| '''Type'''
| '''Class'''
|- style="background-color: #f9f9f9; " |
| BooleanType
| MutableBoolean.class
|- style="background-color: #f9f9f9; " |
| ByteType
| MutableByte.class
|- style="background-color: #f9f9f9; " |
| FloatType
| MutableFloat.class
|- style="background-color: #f9f9f9; " |
| DoubleType
| MutableDouble.class
|- style="background-color: #f9f9f9; " |
| IntegerType
| MutableInt.class
|- style="background-color: #f9f9f9; " |
| LongType
| MutableLong.class
|- style="background-color: #f9f9f9; " |
| StringType
| MutableString.class
|- style="background-color: #f9f9f9; " |
| UnionType
| TaggedObject.class
|- style="background-color: #f9f9f9; " |
| OptionType
| ValueContainer.class
|- style="background-color: #f9f9f9; " |
| RecordType
| Object[].class
|- style="background-color: #f9f9f9; " |
| ArrayType
| ArrayList.class
|- style="background-color: #f9f9f9; " |
| MapType
| TreeMap.class
|- style="background-color: #f9f9f9; " |
| VariantType
| Variant.class
|}
Serialization
[] is a class that serializes Values into and from binary serialization format. It follows the Databoard [].
Binding binding = Bindings.DOUBLE;
Serializer serializer = Bindings.getSerializer( binding );
byte[] data = serializer.serialize( new Double( 100.0 ) );
Double value = (Double) serializer.deserialize( data );
Files can be partially accessed using BinaryAccessor, see []. This is useful when handling larger than memory files.
Validation
Value can be well-formed or valid.
The domain of valid values are defined with restrictions in data types, and @Length
, @Range
, @Pattern
and @MIMEType
Annotations in Classes.
Validation mechanism in Binding asserts that the instance is a valid value of the respective Data Type.
try {
Binding.assertInstaceIsValid( object );
} catch( BindingException e ) {
// Invalid object
}
Other Notes
Binding
is aComparator
, all data values are comparable, the order is defined in [].Binding#createDefault()
creates a valid instance of the Datatype.Binding#createRandom(int)
creates a valid instance with random values. Useful for unit tests.Binding#clone(Object)
creates a new instance with same content.Binding#readFrom(Object, Binding, Binding)
copies contents from another object of same type.
Parsing & Printing
Data values are printed and parsed of the Text notation with the following Binding
methods:
String text = binding.printValue( value, true );
Object value = binding.parseValue( text );
And also to value definitions ''name : type = value''
StringBuilder sb = new StringBuilder();
DataValueRepository repo = new DataValueRepository();
repo.put( "temp", binding, value );
binding.printValue( value, sb, repo, true );
String text = sb.toString();
Object value = binding.parseValueDefinition( text );
Adapter
There can be different Java Class Bindings for a single data type. For example, Double
type can be have bindings DoubleJavaBinding
and MutableDoubleBinding
to two respective classes java.lang.Double
and MutableDouble
. Instance of one binding can be adapted to instance of another with an []`.
Adapter can be created automatically or implemented self.
Adapter adapter = new Adapter() { ... };
Adapter adapter = Bindings.getAdapter( domainBinding, rangeBinding );
Example:
Adapter adapter = Bindings.getAdapter(Bindings.MUTABLE_DOUBLE, Bindings.DOUBLE);
java.lang.Double double = adapter.adapt( new MutableDouble(5.0) );
There is also convenience.
java.lang.Double double = Bindings.adapt( new MutableDouble(5.0), Bindings.MUTABLE_DOUBLE, Bindings.DOUBLE );
The argument given to Adapter#adapt(Object)
may be re-used in the result unless the adapter is a cloning adapter which guarantees a clone. Note, even wih cloning adapters immutable classes, (eg java.lang.Integer) are never cloned.
Adapter cloner = Bindings.adapterCache.getAdapter(domain, range, false, true);
cloner.adapt( ... );
Rectangle2D rect2 = Bindings.clone( rect1, rectBinding, rectBinding );
Type Conversion
In some cases different types may be are type-conversion compatible. An instance of one type is convertible to instance of another.
'''Engineering Units of same quantity are convertible.'''
class CarSI {
String modelName;
@Unit("km/h") double maxVelocity;
@Unit("kg") double mass;
@Unit("cm") double length;
@Unit("kW") double power;
}
class CarIm {
String modelName;
@Unit("mph") float maxVelocity;
@Unit("lbs") float mass;
@Unit("ft") float length;
@Unit("hp(M)") float power;
}
Adapter si2imAdapter = Bindings.getTypeAdapter(
Bindings.getBinding(CarSI.class),
Bindings.getBinding(CarIm.class) );
CarIm americanCarInfo = si2imAdapter.adapt( europeanCarInfo );
'''Primitive Types.''' Note, primitive adapter throws an exception at runtime if values are not adaptable.
Adapter adapter = getTypeAdapter( integerBinding, doubleBinding );
Double double = adapter.adapt( new Integer( 5 ) );
'''Records are matched by field names.'''
class Foo {
int x, y, z;
}
class Bar {
int z, y, x;
}
Adapter adapter = getTypeAdapter( fooBinding, barBinding );
'''Subtype to supertype:''' Note, this conversion cannot be not symmetric, supertypes cannot be converted to subtypes.
class Node {
String id;
}
class ValueNode extends Node {
Object value;
}
Adapter adapter = getTypeAdapter( valueNodeBinding, nodeBinding );
'''Non-existing fields to Optional fields'''
class Node {
String id;
}
class NominalNode {
String id;
@Optional String name;
}
Adapter adapter = getTypeAdapter( nodeBinding, nominalNodeBinding );
'''Enumerations'''
enum Cars { Audio, BMW, Mercedes, Honda, Mazda, Toyota, Ford, Mitsubishi, Nissan, GM }
enum JapaneseCars { Honda, Mazda, Toyota, Nissan, Mitsubishi }
Binding carsBinding = Bindings.getBinding( Cars.class );
Binding japaneseCarsBinding = Bindings.getBinding( JapaneseCars.class );
Adapter adapter = Bindings.adapterCache.getAdapter(japaneseCarsBinding, carsBinding, true, false);
Accessors
Say, you have several gigabytes of data in a file. The whole object doesn't need to be serialized at once. You can read and write the value partially using [] interface. The actual container can be a file, memory byte/ByteBuffer or a Java Object. The content is structured as tree using Databoard's type system. All but referable records are supported (=no recursion in accessors).
'''[] interfaces'''. {| style="background-color: #e9e9e9; border: 1px solid #aaaaaa; " | '''Class''' | '''Description''' |- style="background-color: #f9f9f9; " | | [] | Base class for all data Accessors |- style="background-color: #f9f9f9; " | | [] | Record |- style="background-color: #f9f9f9; " | | [] | Array - an ordered sequence of elements of one value. |- style="background-color: #f9f9f9; " | | [] | Map - an ''ordered'' map of keys to values. |- style="background-color: #f9f9f9; " | | [] | Union |- style="background-color: #f9f9f9; " | | [],[],[],[],[] | Primitive and numeric Accessors |- style="background-color: #f9f9f9; " | | [] | String |- style="background-color: #f9f9f9; " | | [] | Optional value |- style="background-color: #f9f9f9; " | | [] | Variant value |}
[] and [] are facade classes that contains utilities for instantiating and handling Accessors.
[[svn:foundation/databoard/trunk/org.simantics.databoard/src/org/simantics/databoard/accessor/binary/|Binary Accessor]]
is an access to a value in binary format (byte[]
or ByteBuffer
).
'''Example:''' Binary accessor
1em; margin-bottom:1em;"><syntaxhighlight lang="java">
Datatype type = Datatypes.getDatatype( Rectangle2D.Double.class );
Binding binding = Bindings.getBinding( Rectangle2D.Double.class );
Serializer s = Binding.getSerializer( binding );
// Serialize rectangle
Rectangle2D rect = new Rectangle2D.Double(0,0, 10, 10);
byte[] data = s.serialize(rect);
// Open accessor to byte data and modify first field in the byte data
RecordAccessor ra = Accessors.getAccessor(data, type);
ra.setFieldValue(0, Bindings.DOUBLE, 5.0);
// Deserialize values from the byte data back to the rectangle object
s.deserialize(data, rect);
System.out.println(rect.getX());
'''Example:''' File accessor, create
RecordType type = Datatypes.getDatatype( Rectangle2D.Double.class );
// Create a new file and initialize it with rectangle type, and open file accessor
FileRecordAccessor fa = Accessors.createFile( file, type );
// Write the first field (x)
fa.setFieldValue(0, Bindings.DOUBLE, 5.0);
fa.close();
'''Example:''' File accessor, open
// Open an accessor to an existing binary file
FileVariantAccessor fa = Accessors.openAccessor(file);
RecordAccessor ra = fa.getContentAccessor();
// Read the first field (x)
Double x = (Double) ra.getFieldValue(0, Bindings.DOUBLE);
fa.close();
'''Example:''' Java Accessor
Binding binding = Bindings.getBinding(Rectangle2D.Double.class);
Rectangle2D rect = new Rectangle2D.Double(0,0, 10, 10);
// Open accessor to rectangle
RecordAccessor ra = Accessors.getAccessor(binding, rect);
// Set rectangle's first field (x) to 5.0
ra.setFieldValue(0, Bindings.DOUBLE, 5.0);
System.out.println( rect.getX() );
Accessor Reference
Accessors can be opened to a sub-nodes with AccessorReference or by calling getAccessor. AccessorReference is a string of instances, either accessor type specific of LabelReferences.
ChildReference ref = ChildReference.compile(
new NameReference("node"),
new ComponentReference()
);
Accessor child = accessor.getComponent( ref );
ChildReference ref = ChildReference.compile(
new LabelReference("node"),
new LabelReference("v")
);
Accessor child = accessor.getComponent( ref );
ChildReference ref = ChildReference.create("n-node/v");
Accessor child = accessor.getComponent( ref );
ChildReference ref = ChildReference.create("node/v");
Accessor child = accessor.getComponent( ref );
VariantAccessor va = recordAccessor.getFieldAccessor("node");
Accessor child = va.getValueAccessor();
Listening mechanism
Accessor offers a monitoring mechanism for the data model.
There is an [[svn:foundation/databoard/trunk/org.simantics.databoard/src/org/simantics/databoard/accessor/interestset/InterestSet.java|InterestSet]]
that is a description of a sub-tree that is to be monitored of the data model.
[[svn:foundation/databoard/trunk/org.simantics.databoard/src/org/simantics/databoard/accessor/event/Event.java|Events]]
are objects that spawned on changes to the data model. Each event object is annotated with [] that is in relation to the node where the listener was placed.
Accessor Listeners use [] pattern.
Utilities
[] is a facade class that has functions for handling Datatypes.
[] is a facade class that has functions for handling Bindings.
[] is a facade class that has functions for handling Accessors.
[] has Read, Write and accessor functions.
[] is a facade class that has functions for handling Engineering Units.
[] has Methods, Interfaces and RPC utility functions.
[] is a interface for byte handling operations. In addition to basic primitive reading & writing, there are methods for grow, shrink, insert and remove.
[] and [] are corresponding file and memory implementations.
[] is an implementation that represents a sub-region of a RandomAccessBinary.
Interface Types
There are interfaces, method types and method type definitions. Interface type describes a software interface. It is a collection of methods type definitions. Method type is an unnamed function with the following properties : Response Type, Request Type and ErrorType; where Response Type is any Data Type, Request Type is a Record and Error Type is an Union. Method type definition is nominal method description.
The respective Java classes are:
[]
[]
[]
In java InterfaceType description can be created with one of the following methods:
Implementing InterfaceType
Reading an Java Interface Class using reflection
Interface it = new Interface( ... methodDefinitions );
Interface it = getInterface( MyInterface.class );
[] is a binding of an Java Instance and an Interface Type. It decouples the method invocation from the object.
MethodInterface can be created with the following methods:
Implementation
Reflection
MethodInterface mi = new MethodInterface() {...}
MethodInterface mi = Datatypes.bindInterface( MyInterface.class, myObject );
Utilities Datatypes.createProxy()</code> and <code>Datatypes.bindInterface()
adapt between MethodInterface and Java Instance.
MethodInterface mi = Datatypes.bindInterface( MyInterface.class, myObject );
MyInterface myObject = Datatypes.createProxy( MyInterface.class, mi );
Remote Procedure Call
Utilities [] and [] put MethodInterface over TCP Socket.
Server myServer = new Server(8192, mi);
MethodInterface mi = new Client("localhost", 8192);
MethodInterface with Server and Client together forms a Remote Procedure Call (RPC) mechanism.
public interface MyInterface { String helloWorld(String msg); }
[Server]
MethodInterface mi = Methods.bindInterface( MyInterface.class, myObject );
Server myServer = new Server(8192, mi);
[Client]
MethodInterface mi = new Client("localhost", 8192);
MyInterface myObject = Methods.createProxy( MyInterface.class, mi );