
Aalto University

School of Electrical Engineering

Degree Programme in Automation and Systems Technology

Tuomas Miettinen

Synchronized Cooperative Simulation:
OPC UA Based Approach

Master’s Thesis
Espoo, February 9, 2012

Supervisor: Kari Koskinen, Prof.
Instructor: Tommi Karhela, D.Sc.(Tech.)

Aalto University
School of Electrical Engineering
Degree Programme in Automation and Systems Technology

ABSTRACT OF
MASTER’S THESIS

Author: Tuomas Miettinen

Title: Synchronized Cooperative Simulation:

OPC UA Based Approach

Date: February 9, 2012 Pages: xiv + 93

Professorship: Information and Computer Systems in
Automation

Code: AS-116

Supervisor: Kari Koskinen, Prof.

Instructor: Tommi Karhela, D.Sc.(Tech.)

Most simulation tools excel at only one technical domain. For efficient simulation
of multi-domain systems, cooperative simulation (co-simulation) can be used.
In co-simulation, a simulation model is divided into smaller submodels to allow
each of the submodels to be simulated with a purpose-made simulator.

The connectivity between the multiple simulators is a key factor in the per-
formance of a co-simulation. In this work, the OPC UA standard was chosen
as the communication interface between the different simulators. OPC UA is
considered an effective communication interface and, moreover, the versatility
of OPC UA allows the same interface to be utilized by the user to control and
configure the co-simulation.

In this thesis, the core functionalities of an effective and scalable synchronized
co-simulation environment were designed and implemented. As an important
part of the work, a novel solution for OPC UA based synchronization in con-
tinuous dynamic co-simulation is proposed. The evaluation conducted on the
implementation confirms that both the synchronization solution and the OPC
UA interface are suitable for being used in co-simulation of real-world systems.

Keywords: co-simulation, process simulation, scalability, Apros, Open-
Modelica

Language: English

ii

Aalto-yliopisto
Sähkötekniikan korkeakoulu
Automaation- ja systeemitekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Tuomas Miettinen

Työn nimi: Synkronoitu yhteissimulointi:

OPC UA -pohjainen ratkaisu

Päiväys: 9. helmikuuta 2012 Sivumäärä: xiv + 93

Professuuri: Automaation tietotekniikka Koodi: AS-116

Valvoja: Kari Koskinen, Prof.

Ohjaaja: Tommi Karhela, TkT

Useimmat simulointityökalut toimivat hyvin vain tietyllä tekniikan osa-alueella.
Järjestelmiä, jotka koostuvat osasista useilta eri tekniikan aloilta, on siten usein
tehotonta simuloida käyttämällä vain yhtä simulointiohjelmistoa. Yhteissimu-
lointi tarjoaa ratkaisun tähän ongelmaan. Yhteissimuloinnissa simulointimalli
jaetaan osiin, joista kukin simuloidaan parhaiten tarkoitukseen sopivalla simu-
laattorilla.

Erityisen tärkeä tekijä yhteissimuloinnissa on yhteys simulaattoreiden välillä.
Tässä työssä käytettiin OPC UA -standardin mukaista rajapintaa simulaattorei-
den väliseen kommunikointiin. Sen lisäksi, että OPC UA on verraten tehokas
kommunikointirajapinta, sen monikäyttöisyyden ansiosta sitä voidaan käyttää
myös ulkoisena rajapintana yhteissimulointiin.

Tässä työssä suunniteltiin ja toteutettiin tehokas ja skaalautuva synkronoitu
yhteissimulointiympäristö. Tärkeänä osana työtä esitellään uusi OPC UA:han
pohjautuva synkronointiratkaisu käytettäväksi jatkuvaan dynaamiseen yhteis-
simulointiin. Toteutuksen pohjalta suoritetut testit osoittavat, että sekä luotu
synkronointiratkaisu että OPC UA -rajapinta soveltuvat käytettäväksi todellis-
ten järjestelmien yhteissimuloinnissa.

Asiasanat: co-simulointi, prosessisimulointi, skaalautuvuus, Apros,
OpenModelica

Kieli: Englanti

iii

Preface

Even the ancient Romans had a Latin expression that clearly explains what
writing a master’s thesis is all about: “cacoethes scribendi”. In this writing spree
I got the most invaluable help from my instructor Tommi Karhela – thank you. I
would also like to thank my supervisor Kari Koskinen for his help and comments
on my thesis.

Romanes eunt domus; thanks, Miika, for proof-reading and LATEX helpdesk.

Si hoc legere potes nimium eruditionis habes. Finally, I would like to thank all
my fellow students for all the support over the past almost six years.

Espoo, February 9, 2012 Tuomas Miettinen

iv

Abbreviations and Acronyms

AAA Authentication, authorization, and accounting
Adda Advanced data access
ADI Analyzer Device Integration
COM Component Object Model
DASSL Differential Algebraic System Solver
DCOM Distributed Component Object Model
DCS Distributed control system
DI OPC UA for Devices, OPC UA Device Integration
DLL Dynamic-link library
ERP Enterprise resource planning
FDI Field Device Integration
HMI Human machine interface
HW/SW Hardware / software
IEC International Electrotechnical Commission
I/O Input/output
MES Manufacturing execution system
OLE Object Linking and Embedding
OMI OpenModelica Interactive
OPC Open connectivity via open standards (formerly OLE

for Process Control)
OPC DA OPC Data Access
OPCDAKit OPC DA implementation of Apros
OPC DX OPC Data eXchange
OPC UA OPC Unified Architecture
OPC XML-DA OPC XML-Data Access
OPCXMLKit OPC XML-DA implementation of Apros
OSMC Open Source Modelica Consortium
PDES Parallel discrete-event simulation
PI Proportional-integral
PLC Programmable logic controller

v

SC Simulation Control
SCADA Supervisory control and data acquisition
SDK Software development kit
SOA Service-oriented architecture
TCP/IP Transmission Control Protocol / Internet Protocol
URL Uniform resource locator
WS Web services
XML Extensible Markup Language
xPAT eXtended Process Analytical Technology

vi

Glossary

Notation Description

classic OPC The set of OPC interfaces based on Microsoft tech-
nologies (OLE, COM, DCOM).

configuration client An OPC UA client application which can be used
to configure a connection between a pair of OPC
UA servers.

co-simulation A simulation in which the simulation model is
composed of multiple submodels which are built
using different simulation software applications.
The submodels together form the whole simula-
tion model. [1]

DXConnection An object defining the connection between one
source and one target item.

frontend That part of a software application that is closest
to the user.

soft real-time constraint A quality of a system which requires that response
times of the system must be deterministic yet
missing an occasional deadline can be tolerated.

subscribee The server of which variable values are subscribed
by a server in the co-simulation cluster.

subscriber The server which subscribes to a server in the
co-simulation cluster.

vii

sync interval The time period, in simulation time, between two
adjacent sync points.

sync point A point in simulation time, in which the data
communication between the separate simulations
takes place.

topology In this thesis: the set of interconnections between
the simulators in a co-simulation.

UA Native A protocol which defines a binary representation
for transferred information in OPC UA.

viii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goal and Scope of the Thesis . 2
1.3 Methods . 3
1.4 Structure of the Thesis . 4

2 Computer Simulation Technology 5
2.1 Computer Simulation in General 5
2.2 Categories of Simulation . 6

2.2.1 Dynamic vs. Steady-state Simulation 6
2.2.2 Continuous vs. Discrete-event Simulation 7
2.2.3 Process Simulation . 7
2.2.4 Parallel and Distributed Simulation 8
2.2.5 Cooperative Simulation 8

2.3 Synchronization . 9
2.4 Simulation Tools Used in This Work 12

2.4.1 The Modelica Language 12
2.4.2 OpenModelica . 14
2.4.3 Apros . 16
2.4.4 Comparison . 17

3 OPC Interfaces 18
3.1 Classic OPC . 18

3.1.1 Basis and Applications . 19
3.1.2 OPC Data eXchange . 20

3.2 OPC Unified Architecture . 22
3.2.1 Technical Differences between the Classic OPC and OPC UA 23
3.2.2 Advantages and Uses . 24
3.2.3 Disadvantages and Criticism 26
3.2.4 Status and Future Development 28

ix

3.3 Functionalities of OPC UA – a Detailed View 30
3.3.1 Address Space Model . 30
3.3.2 Services . 33
3.3.3 Exchanging Data . 34

4 Research Approach 36
4.1 Design and Implementation . 36
4.2 Tests . 37
4.3 Tools . 38

5 Design 39
5.1 Qualitative Goals of the Design 39
5.2 Architecture of the OPC UA Server 40
5.3 Synchronization . 42
5.4 OPC UA Client and Connection Configuration Management . . . 45

6 Implementation 47
6.1 OPC UA Interface in OpenModelica and Apros 47

6.1.1 Adda Interface . 47
6.1.2 OpenModelica Frontend 48
6.1.3 Implementation Details of the OPC UA Server 49

6.2 Technical Details of the Synchronization Mechanism 52
6.3 Connection Configuration Management 56

6.3.1 Address Space . 57
6.3.2 Configuring the Connection via OPC UA 59
6.3.3 Storing the Configuration 60

7 Testing and Evaluation 61
7.1 Tests . 61

7.1.1 Basic Control Model Co-simulation 61
7.1.2 Scalability . 64
7.1.3 Different Topologies . 72

7.2 Discussion . 73

8 Conclusions 75

Bibliography 77

A Methods for Connection Configuration 86

B connectionconfig.xsd Schema 90

x

C ConnectionConfig.xml Example 92

xi

List of Tables

7.1 Simulation time without synchronization 67
7.2 The synchronization time of co-simulations lasting 10 seconds . 68
7.3 The synchronization overhead in real-time co-simulation in per-

centages . 69
7.4 The longest sync intervals with a 1000 items in communication . 70
7.5 The longest sync intervals with 3000 items in communication . . 71
7.6 Elapsed real time with and without interference 71

xii

List of Figures

2.1 The sequence diagram of the synchronization mechanism in the
study by Santos et al. 11

3.1 Software applications are connected to hardware devices using
either special purpose drivers or the classic OPC. 20

3.2 OPC DX adds horizontal server–server connection capability to
the classic OPC. 21

3.3 A connection between a source and a target item is established
between classic OPC DX and OPC DA servers. 22

3.4 A typical information system of a company integrated with OPC UA 25
3.5 The 13 parts of the OPC UA specification 28
3.6 A node in the OPC UA address space model belongs to one of the

node classes and has a fixed set of attributes depending on the
node class. 31

3.7 The address space of the thermometer example 32

5.1 The static solution: Both OpenModelica and Apros incorporate an
OPC UA server. Optionally, they can be connected to the OPC DA,
OPC XML-DA, or the Simulation Control interfaces via the OPC
kits. 41

5.2 The dynamic solution can utilize the static OPC UA interface
in communication between the dynamic OPC UA server and
OpenModelica simulations. 42

5.3 The sequence diagram of the synchronization mechanism 44

6.1 An example OPC UA address space 50
6.2 Delay in detecting a change in the real system 51
6.3 OPC UA server subscription thread activity diagram 54
6.4 Synchronization mechanism activity diagram. The method pa-

rameters are left out of the notation. 55

xiii

6.5 The simulations marked with M are masters in the co-simulation
cluster. 56

6.6 The DX branch of the address space in a classic OPC DX server . 57
6.7 An example address space of the DX object 58

7.1 A PI controller controls a valve. 62
7.2 The step response of the simulation with the whole model simu-

lated in Apros . 63
7.3 The step response of the simulation with the process simulated in

Apros and the PI controller in OpenModelica 64
7.4 The first scalability test consists of two identical OpenModelica

simulations. The outputs of the sine signal generators are written
into the other simulation. 66

7.5 The tested co-simulation topologies 72

A.1 SetTickLength . 86
A.2 Source server: Add . 87
A.3 Source server: Modify . 87
A.4 Source server: Delete . 87
A.5 DxConnection: Add . 88
A.6 DxConnection: Modify . 89
A.7 DxConnection: Delete . 89

xiv

Chapter 1

Introduction

Technical systems of today have become large, highly complex, and mathe-
matically difficult. When it comes to building and controlling such systems,
conventional tools are becoming obsolete. The exponentially growing compu-
tational speed paves the way for modeling and simulation tools development.
Compared with performing experiments on real systems, modeling is cost-
effective, fast, and safe. In addition, to control and modify a model is much easier
than to modify a real-world system. Modeling and simulation tools have thus
become essential in constructing such systems.

Simulation software applications usually excel at only one technical domain.
Modeling and simulating a technical system which consists of parts from dif-
ferent domains can thus be ineffective if only one simulation tool is utilized.
Dividing a simulation model into smaller submodels allows the submodels to be
simulated separately using different purpose-made simulators. This technique is
called cooperative simulation, or co-simulation for short. With co-simulation, im-
proved performance, more accurate results, and easier modeling can be achieved.
The two main problems in co-simulation are how the multiple simulators commu-
nicate with each other and how they are run synchronously. These two problems
are studied in this work.

To study simulator synchronization, the various synchronization techniques
used in literature are surveyed in this thesis. Based on the survey, a novel OPC
UA based synchronization mechanism is developed for the two simulation software
applications used in this work, Apros and OpenModelica.

The communication between the multiple simulators is based on the OPC
UA (OPC Unified Architecture) communication interface. OPC UA is a standard
interface with all the necessary features for efficient and versatile data exchange.
Using OPC UA allows also the environment to be later expanded to meet its
future needs. As a by-product to the usage in synchronization, the OPC UA

CHAPTER 1. INTRODUCTION 2

implementation provides the simulators with a means of general purpose I/O
(input/output) as well. Even though OPC UA has not yet established as large a
user base as its predecessor, the so-called classic OPC, there is great potential
that the classic OPC will be superseded by OPC UA as the next widely used
communication standard in industrial automation.

1.1 Motivation

This thesis has two main motivations: First, a connectivity between OpenModel-
ica and Apros is implemented to allow synchronized co-simulation between the
two simulators. Secondly, as a by-product, the two simulators are enabled to
communicate with other OPC UA compliant software and hardware.

The first main motivation, creating a co-simulation environment for Apros
and OpenModelica, has the following benefits: As said, dividing a simulation
model into smaller submodels enables exploiting the strong points of the two
simulators. These strong points are further discussed in Section 2.4. Additionally,
the division of the model enables parallelizing the computation of a simulation.
Large process simulation models in particular would benefit from running in
parallel due to the achieved faster simulation. The simulation parallelization is
not an actual goal of this thesis and is thus not discussed further.

The other main motivation for implementing the OPC UA server to the
simulators is to allow them to be connected more tightly to third party software
and hardware components via OPC UA. Such components include, for instance,
PLCs (programmable logic controller), DCSs (distributed control system), and
simulated DCSs. This feature has applications in, for example, automation design,
automation testing, and operator training. The benefits of the OPC UA interface
implementation are covered more comprehensively in Chapter 3.

1.2 Goal and Scope of the Thesis

The main objective of this thesis is to create a co-operative simulation environment
based on a standard communication method. To achieve the main objective, the
core components needed for synchronized communication are implemented into
Apros and OpenModelica. The key quality attributes of the implementation are
viewed later in Section 5.1. As an important part of the work, the operation of
the implementation is evaluated. The main objective of this thesis can be divided
into the following subtasks.

CHAPTER 1. INTRODUCTION 3

• Implementing the OPC UA interfaces

Prior to the synchronization mechanism can be developed, the commu-
nication interface is implemented. The OPC UA server implementation
equips the simulators with an interface for data acquisition and simulation
control features to be used by external applications. The OPC UA client
implementation allows the simulators to utilize the OPC UA servers of
each other.

• Solving the synchronization problem

In this work, the target is to create a synchronization mechanism with
a deterministic response. In other words, the result of all co-simulation
experiments made of a simulation model shall yield identical results.
In addition, the target is to create a mechanism which could be used in
applications with soft real time constraints.

• Connection configuration management system development

The connection configuration management system is developed to han-
dle the connection configuration information; that is, what data items are
exchanged between the simulations. In addition, the OPC UA server is
enhanced with an interface to enable modifying the configuration.

• Performance evaluation

The evaluation of the implementation aims at validating that the core
functionalities of the implementation can be used in real, large applications.
As a by-product, the tests are used to draw conclusions of the performance
of the plain OPC UA connectivity of the simulators. The tests with their
results are presented in Chapter 7.

In addition to the OPC UA interface, OpenModelica is equipped with the
classic OPC DA (Data Access) interface as well. Reusing the already existing OPC
DA implementation of Apros enables obtaining the classic OPC DA interface as
a by-product. Embedding the classic OPC DA interface to OpenModelica is only
a minor goal of this work and is thus not discussed thoroughly.

1.3 Methods

This thesis is composed of the following segments: First, a literature survey
is made to study the topic. Secondly, the co-simulation environment devel-
oped is presented. Thirdly, the evaluation of the co-simulation environment
implementation is discussed.

CHAPTER 1. INTRODUCTION 4

In the literature survey, the two main subjects of the thesis are presented.
Computer simulation and the OPC UA interface are discussed in general to give
the reader a broader view to the subjects. Co-simulation and problems related
to that subject are discussed in a more detailed fashion based on theory and
applications. OPC UA as well is studied to the extent that is required for this
work. In addition, the state-of-the-art of both co-simulation and OPC UA are
presented.

Subsequent to the literature study, the core design of the co-simulation envi-
ronment is presented on a higher level, with alternative solutions contemplated
and the chosen approaches justified. After that, the implementation is discussed
in a more detailed fashion: the synchronization mechanism is explained in detail
and the functionalities available through the OPC UA interface implementation
are introduced.

Lastly, the tests to evaluate the design and implementation of the co-
simulation environment are introduced and their results are presented. Fi-
nally, the test results are analyzed and reflected against the objectives of the
thesis.

1.4 Structure of the Thesis

The structure of this thesis is as follows:

• Chapter 2: The basics of computer simulation are presented, a variety of
co-simulation techniques are viewed, and the simulation tools used in this
thesis are introduced.

• Chapter 3: The OPC interfaces are presented: their relevance is discussed,
and the details of OPC UA are viewed from a technical viewpoint.

• Chapter 4: The research approach of the experimental part of this thesis is
presented.

• Chapter 5: The high level architectural choices for the implementation are
presented and justified.

• Chapter 6: A more detailed view to the implementation is given.

• Chapter 7: The tests conducted to evaluate the design and implementation
of the work are presented with their results analyzed.

• Chapter 8: Conclusions of this thesis are drawn and potential development
plans pondered.

Chapter 2

Computer Simulation
Technology

In this chapter, computer simulation technology is discussed. The topic is very
broad and wide and thus only the very basics of the subject are discussed. A
more detailed view is given on the concepts that are relevant to what is designed
and implemented in the scope of this work.

First, the term computer simulation is defined and its importance is explained.
Secondly, different categories of computer simulation that are relevant for this
work are discussed shortly. Thirdly, a variety of synchronization techniques used
in computer simulation are studied. Finally, the simulation software applications
used in the experimental part of this thesis are introduced.

2.1 Computer Simulation in General

Technical systems of today have become large, highly complex, and mathemati-
cally difficult. When designing any large technical system, testing its correct
operation by running an experiment with the actual physical components of the
system is generally not a reasonable solution. In many cases the best solution to
start the designing process is to create a mathematical model to represent the
physical system. As these systems tend to be rather complex by nature, validating
their correct operation is typically impossible by using analytical tools only.
Computer simulation is commonly seen as the technique to use.

This work examines the computer simulation technology from a computational
engineering viewpoint, in contrast to scientific computing. Therefore, the following
definition for the term computer simulation applies in this thesis: A model
of the physical real-world system is evaluated numerically using a computer.
The numerical evaluation yields an estimation of the effect that inputs have on

5

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 6

outputs in the model. Hence, the result of the simulation estimates the behavior
of the real-world physical system. [1]

In addition to the designing phase, computer simulation aids in a number of
other activities. These activities include, but are not limited to, the following:

• A simulation can be used to gain knowledge of a real-world system. For
instance, the operation of the system with given inputs can be examined
without a risk of affecting the real system.

• Model-based control schemes can be utilized: the output of the real system
can be predicted at run-time and this knowledge can be utilized in the
control.

• Operators can be trained with a simulator before they start operating the
real system.

• The operation of a real-world system with a part of the system missing can
be studied by simulating the lacking part.

2.2 Categories of Simulation

Computer simulation techniques can be categorized in numerous ways. In this
thesis, the focus is on system simulation in particular. This section presents a few
types of system simulation to explain the key terminology of this thesis. Both of
the simulators used in the experimental part of this work are primarily both
dynamic and continuous. Hence, these two concepts are explained more closely
than their counterparts, which are also viewed briefly to give a broader view to
the subject.

2.2.1 Dynamic vs. Steady-state Simulation

A system simulation can be labeled as either a steady-state or dynamic simulation.
Steady-state simulation is simulation with no time-dependency. It can be used
to depict a snap-shot of a system in a particular time. In addition, steady-state
simulation can be used to simulate systems which are not time-dependent. In
contrast, dynamic simulation can be used for systems which have properties that
change over time. [1]

Steady-state simulation can be seen as a special case of dynamic simulation:
all time-derivatives equal to zero. On the other hand, dynamic simulation can
be seen as sequential steady-state simulations with changing parameter values.
Hence, it is obvious that dynamic simulations are much more complex than

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 7

steady-state simulations: they require more sophisticated solvers and longer
computation times to simulate.

Dynamic simulation is needed in a vast variety of applications. Examples
of such applications include modeling unstable systems and using predictive
control. In addition, transients, such as start-up or shut-down, of an otherwise
stable system can be modeled with dynamic simulation.

2.2.2 Continuous vs. Discrete-event Simulation

Like steady-state is opposite to dynamic, so is usually continuous to discrete-
event. In continuous simulation, the state changes continuously. In discrete-event
simulation, the state of the simulation can change only at specific points in time.
The definitions of these two types of simulation do not include any information
about the system that is modeled; a continuous system can be simulated with a
discrete-event simulation and vice versa. [1]

In continuous simulation, the state changes are usually defined as a set of
differential equations between the state variables; given an initial condition,
the differential equations, and inputs it is possible to define the state of the
simulation model at any time. Numerical methods, such as Runge-Kutta and
DASSL (Differential Algebraic System Solver), are typically used to calculate the
simulation incrementally further in time in a step-by-step manner. [1]

In discrete-event simulation, the state of the simulation can change only at
discrete points in time, namely when an event occurs. The simulation advances
from the initial state to the time when the most imminent event is scheduled to
occur, then to the next event, and so on. At each event, the future event times are
also determined. Time steps between events are typically variable length, even
though a fixed step size may be used as well. [1]

2.2.3 Process Simulation

The term process has a variety of definitions. In this context, the term is used
to denote such a series of events which aims at manufacturing products. Typi-
cal examples of such processes include manufacturing chemical compounds,
polymers, or food, and refining oil; that is, products are formed out of their raw
ingredients. Processes can be either continuous or batch processes. [2]

A process simulation can be either steady-state or dynamic and either discrete-
event or continuous. Usually process simulation is adopted in chemical processes
but also in power plants and similar facilities. A chemical process in its equilib-
rium, for example, can often be modeled with a steady-state process simulation,

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 8

whereas the operation of a power plant may need to be modeled with a dynamic
simulation.

2.2.4 Parallel and Distributed Simulation

Traditionally, simulations have been computed sequentially which implies that
there is no parallelization inside a time step. The concept that the computation
could be distributed was introduced in 1977 [3]. Distributing the workload
between multiple units leads to shorter simulation times. In addition, it is a
reasoned methodology since parallelism is often present also in many real-life
systems [4]. Especially nowadays when parallel computing in regular PCs has
become a commonplace, parallel simulation has become essential to fully utilize
the processors.

Even though parallel and distributed simulations are quite similar, they
have a few differences. For the literature uses these terms ambiguously, the
most often used definitions for these subjects are applied in this thesis: The
term parallel simulation is used to denote a single simulation which is run on
multiple processors in a “parallel” fashion. The term distributed simulation is used
to denote multiple interconnected simulation executables which jointly form the
complete simulation experiment and are run on separate machines.

Most research around parallel and distributed simulation applies to discrete-
event simulation. Such simulations are often referred as parallel discrete-event
simulations (PDES). Studies around parallel and distributed simulation for
dynamic simulations have been minor to and less universal than the research
around PDES simulation. Not nearly as much basic theory has been published
and the few studies available tend to be tailored for specific purpose simulations.

2.2.5 Cooperative Simulation

Cooperative simulation, or co-simulation for short, denotes to simulating a model
composed of multiple submodels which are built using different simulation soft-
ware applications. The submodels together form the whole simulation model. [1]

Co-simulation as such is generally not parallel simulation: the multiple
software applications may as well be run in a sequential fashion on one CPU
(central processing unit). The difference between co-simulation and distributed
simulation is that a co-simulation does not necessarily run on multiple ma-
chines and a distributed simulation is not necessarily executed using different
simulation tools.

Many simulation tools have the ability to utilize external simulation libraries
or other units built with other simulators or programming languages. For

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 9

instance, a MATLAB [5] block can be included in a Vensim [6] simulation and a
LabVIEW [7] simulation can be enhanced with a Python script. Examples of
larger co-simulation systems include various HW/SW (hardware / software) co-
simulation frameworks and distributed interactive simulation environments (for
example SIMNET [8]). Even some generally applicable theory has been published
of co-simulation: a methodology to interconnect multiple simulators or even
multiple co-simulator clusters has been presented in the study by Wainer, Liu,
and Jafer [9]. The study presents detailed descriptions of the whole co-simulation
framework for PDES simulations.

2.3 Synchronization

The key problem in parallel, distributed, and co-operative simulation is to
manage how the multiple simulators can be run synchronously with each
other. In this section, a variety of synchronization techniques used in literature
are presented. The usefulness of these techniques for cooperative dynamic
simulation is also considered. In addition, issues that arise when designing a
synchronization scheme are presented.

In this thesis, the following definitions apply: In general, a co-operative
simulation has synchronization points, or sync points for short. A sync point is a
point in simulation time in which the separate simulators exchange data. The
time period, in simulation time, between two adjacent sync points is called a
sync interval. If all the sync intervals have a constant length, the co-simulation
can be called a fixed-step simulation, even when the individual simulations may
vary their internal step length within a sync interval.

The most straightforward synchronization technique is to run the simulations
in a sequential manner: One simulation at a time proceeds one sync interval
ahead after which it emits its data to other simulations. The sequential approach
has the benefit that the result of one iteration in one simulation can be utilized by
other simulations before they have proceeded to the same sync point. In a study
conducted by Wünsche et al. [10] in 1997, two simulators were coupled together
to study static and dynamic characteristics of integrated circuits. In their study,
one of the simulators acted as a master and the other one as a slave. The master
chose the length of the simulation time step and made convergence estimation.
The simulation was sequential; one simulator calculated one step further using
the results from the other one after which the other simulator repeated the same
procedure. The communication method between the simulators was to write
results in a file where the other simulator could read them from.

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 10

Parallelization has been studied broadly among discrete-event simulation.
Basically, PDES parallelization techniques can be divided into optimistic and
conservative techniques. To be effective, optimistic techniques, such as the Time
Warp mechanism [11], typically require the assumption that communication
is needed only rarely. In dynamic simulation, the derivatives of the variables
in communication are usually non-zero and thus communication is usually
needed in all sync points. Therefore, optimistic techniques fit poorly for dynamic
simulation. Conservative techniques do not have this precondition, but their
performance is poorer and less robust to changes in the simulation model. [1]
Hence, it is not well advised to try to adapt any fine-grained parallelization
technique designed for PDES to dynamic simulation.

Common to most of the studies around parallel and distributed simulation for
dynamic simulations is that there is a scheduler, coordinator, or some other central
orchestrating unit apart from the simulators. This unit controls the execution of
the simulations and typically mediates data between the simulations as well. In a
study by Krzhizhanovskaya et al. [12], for instance, a job manager system monitors
the utilization rates of each processor and gives jobs for idling processors. In
a study by Brailsford et al. [13], a distributed simulation is coordinated by a
middleware software component, through which all communication between
the simulations occurs.

A study by Santos et al. [14] presents a problem similar to the one in this
thesis: a dynamic process simulation model is divided into multiple submodels
which are simulated in a distributed fashion. In the study, a server–client
architecture is used between a coordinating unit and the simulators, as is shown
in Figure 2.1. The coordinating unit is waiting that all the simulators have
reached the sync point, after which it transmits the variables in communication
by using reads and writes. When a simulator has received the write command
from the coordinator, it can start executing to the next sync point. The framework
uses DCOM as the communication technology.

The barrier synchronization technique used in parallel computing in general
can be used also in synchronous simulation. In barrier synchronization, the
multiple simulators run independently until they reach a common sync point
which they may not pass before all of the simulators have reached that barrier.
This technique as such does not specify a method for the communication between
the processes. An example of barrier synchronization in simulation can be found
in a study by Nicol and Liu [15]. The study presents a PDES framework with a
hybrid synchronization mechanism with the barrier approach being one of the
techniques used.

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 11

Figure 2.1: The sequence diagram of the synchronization mechanism in the study by
Santos et al. [14]

A co-simulation conducted in a parallel fashion leads to internal delays.
This is well illustrated in Figure 2.1: A simulation does not obtain the result of
the other until both of them have reached the sync point; this is contrary to a
sequential co-simulation or any simulation with no parallelization. This delay
can become an issue, for instance, in model based control: each output from the
controller is given as input to the process model with a delay of one sync interval.
This delay leads to error in the responses of the simulations and may lead to
oscillation or, at worst, to the divergence of the whole co-simulation. In a study
by Garcia-Osorio and Ydstie [16], a co-simulation synchronization mechanism is
presented to tackle this problem: after the simulators have advanced to the sync

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 12

point, the magnitude of the error is calculated. If the error is above a predefined
maximum level, the iteration is re-run with a shorter sync interval. The error
estimation and correction in detail is out of the scope of this thesis, though, and
is thus not studied further.

The time advance mechanism in a simulator is not necessarily always able
to advance exactly to the next sync point but instead to some near point after
the sync point. Interpolation is one technique that can be used to overcome
this issue: the sync point value of a variable can be estimated with numerical
techniques. [17] If, however, the time steps of the multiple simulations can be
chosen to be multiples of each other, this issue can be avoided by choosing the
sync interval accordingly.

2.4 Simulation Tools Used in This Work

In this section, the simulation environments used in this work are introduced
and their real-life application areas discussed. First, a modeling language called
Modelica is presented. Secondly, OpenModelica, an open source simulation
environment for the Modelica language, is presented. Thirdly, the dynamic
process simulator Apros is presented. Finally, the two simulators are compared
with each other.

2.4.1 The Modelica Language

Modelica is an open standard modeling and simulation language developed in an
international effort started in 1996. The Modelica Association, an international
non-profit organization, has been developing the open standard since then. [18]
The Modelica language is intended to be used in modeling the dynamic behavior of
technical systems which consist of components from different domains. It can be
used especially to model large, complex, and heterogeneous systems. It is an
object-oriented high level language which can be used with systems that need
high computational performance. [19] The Modelica language has three key
differences with regard to most other simulation languages. These features are
discussed in the following.

First, in typical programming, modeling, and simulation languages, the
functionality of a program is described with assignment sentences. When talking
about physical equations, information is lost with such an approach. Modelica,
however, is a declarative language using equations instead. The equations can
be algebraic, differential, or discrete. As an example, the first order differential
equation ẋ = −ax,a = 1 can be written in Modelica as is shown in the following:

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 13

model SampleModel

parameter Real a = 1;

Real x;

equation

der(x) = -a * x;

end SampleModel;

To use equations implies that real-world physical objects can be modeled as such
in the language. Therefore, the modeler does not have to consider in which way
the equations are used, which would have to be done with languages allowing
mere assignment. The generalization of the equations yields both simpler models
and more efficient simulation. [19] [20]

Secondly, most modeling languages are good at only a few technology do-
mains. Modelica, however, can be used to model systems of different kinds. Systems
such as electrical, mechanical, thermodynamic, hydraulic, biological, control,
event, and real-time can be modeled and connected to each other to construct
hybrid models. Moreover, Modelica is well suited for both low and high level
numerical algorithms [21]. [19]

Thirdly, Modelica is an object-oriented language with a general class concept.
Added with the equation-based approach, it allows creating physically relevant
and easy-to-use model components which are employed to support hierarchical
structuring, reusability of components, and interoperability of ready-made model
blocks. In other words, the class concept facilitates reusing and exchanging
models and model libraries. [19]

There are numerous implementations of the Modelica language available.
The commercial Modelica simulation environments include Dymola, Vertex,
Converge, The Modelica SDK, MOSILAB, SimulationX, AMESim, MapleSim,
MathModelica, and Modelica Physical Modeling Toolbox for MATLAB. In addi-
tion to the commercial simulation environments, a number of non-commercial
implementations exist as well. These include JModelica.org, Modelicac, Open-
Modelica, and SimForge. [18] In this thesis, only OpenModelica is discussed
more deeply, even though the uses of some of the other environments are viewed
in this subsection.

As a general domain modeling language, the Modelica language can be used to
model various types of technical systems. Industries applying the various Model-
ica environments include, but are not limited to, the following [22] [23] [24] [25]:

• automotive,

• shipbuilding,

• aerospace,

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 14

• robotics and mechatronics,

• precision instrument development,

• machine design,

• electronics,

• power plant industry,

• oil and gas industry,

• medical science,

• system biology, and

• education.

A few examples of technical domains in which Modelica has been used are
listed to give a scope of the divergence of the application area of Modelica. The
examples are picked from customer references of Modelica tools [22] [24] [25]
and are as follows:

• electronic circuit simulation,

• optimizing process control,

• improving energy efficiency,

• dynamic models development and analysis,

• improve fault location techniques,

• 3-D biomechanical modeling, and

• evaluating different operation strategies.

2.4.2 OpenModelica

OpenModelica is an open-source environment, the purpose of which is to provide
tools for building, compiling, and simulating models made using the Modelica
language. It is intended to respond to both industrial and academic demands.
The development and promotion of OpenModelica is supported by the nonprofit
organization Open Source Modelica Consortium (OSMC). [26] [27]

The OpenModelica system has both short-term and long-term goals. The
short-term goals include developing an efficient interactive computational envi-
ronment for the Modelica language and a rather complete implementation of the

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 15

language. The main long-term goal is to have a complete reference implementa-
tion of the Modelica language, including simulation of equation based models
and additional facilities in the programming environment. The long-term goals
also include convenient facilities for research and experimentation in language
design or other research activities. To achieve the performance and quality of
the commercial products is not a goal of OpenModelica, though. [21]

OpenModelica can be utilized as such to build and simulate Modelica models.
In addition, since being free software, OpenModelica or parts of it can be
integrated into existing systems as plugins or developed further by the user
to better fit for the target system [21]. In the Simantics software platform, for
instance, this sort of a plugin approach is utilized [28].

Scalability has been a key point in the development of OpenModelica for a
couple of years [29] [30] [31]. The better the scalability, the larger models can be
simulated. One goal of the experimental part of this thesis is a well-scalable
implementation for both the OPC UA server and the synchronization of the
server–server connection.

Prior to the OPC interfaces implementation in OpenModelica, the OpenMod-
elica Interactive (OMI) interface has been the solution for I/O in OpenModelica.
The interface is very simple enabling only the most basic communication. After
the initiation sequence, the OMI interface provides only the following functional-
ities: the simulation can be started, interrupted, stopped, or rewound to a specific
time and parameter values of the simulation can be changed. In addition, OMI
sends the values of the monitored parameters to the client after every simulation
step. No browsing can be done through OMI, nor does it provide any metadata.
Even though OMI utilizes TCP/IP protocol (Transmission Control Protocol /
Internet Protocol), it uses strings of characters for all data. Thus, the performance
of OMI is fairly poor if larger amounts of data must be transferred. [32]

The importance of OpenModelica in industry is only starting to grow and
is not nearly at the same level as its commercial counterparts. OpenModel-
ica has been adopted in a larger scale only in academic usage. At the end
of 2010 there were 18 members from industry and 14 from universities in
OSMC [27]. As the amount of company members in the OMSC has been growing
steadily [29] [30] [31], it could be predicted that industry will be increasingly
adopting OpenModelica in the future. A couple of case examples in which
OpenModelica has been used are as follows:

• interactive simulations of technical systems in a virtual reality environ-
ment [33],

• dynamic simulation of chemical engineering systems [34],

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 16

• modeling Petri nets [35], and

• fluid simulation and optimization [36].

As OpenModelica is open source software, it has been integrated as an
extension to the simulation platforms Simantics by VTT [28], D&C Engine by
Bosch Rexroth [37], and MathModelica Lite by MathCore [38]. In Simantics,
OpenModelica is also utilized as the solver of the system dynamics tool.

2.4.3 Apros

Apros software is multifunctional software for modeling and dynamic simulation
of processes and different power plants. It is intended to be used to model and
simulate a whole power plant or other process. Apros is developed by Fortum
(formerly known as Imatran voima) and VTT. It was first introduced in 1986 and
has been developed further since then.

The applications of Apros primarily include simulating power plants, both
conventional and nuclear. It is also used in some other types of simulation such
as batch production. In addition, users of Apros include automation suppliers,
paper mills and solid oxide fuel cell system developers, among others. [39] Apros
has also been subject for research: a number of theses which either utilize or
study Apros have been written in Finnish Universities.

Apros has several ways of communicating with external applications. The
classic OPC DA is one of these methods: The Apros frontend implements the
Adda interface. Adda is a proprietary interface with data access and simulation
control functionalities. OPCDAKit is a dynamic-link library (DLL) included in
Apros which maps the Adda interface to the OPC DA interface. In addition
to the OPC DA interface, OPCDAKit implements the Simulation Control (SC)
interface. The Simulation Control interface is used alongside with OPC DA to
control the simulation. The Adda interface is described more thoroughly in
Subsection 6.1.1.

The application area of Apros is much narrower than that of Modelica and
OpenModelica. Likewise with Modelica, the user base of Apros is global: there are
Apros installations in 26 countries. These installations are used in development,
research, analysis, operator training, and teaching. The most notable applications
of Apros include the following [40] [41]:

• combustion power plants,

• fossil power plants,

• thermal power plants,

CHAPTER 2. COMPUTER SIMULATION TECHNOLOGY 17

• nuclear power plants,

• a fuel cell power plant,

• a desulphurization plant,

• a combined cycle gas turbine power plant,

• a heat transport system [42], and

• a ship engine room.

2.4.4 Comparison

Both OpenModelica and Apros are continuous dynamic simulation software.
Even though OpenModelica has been intended for both industrial and academic
usage, it has mostly been applied in the latter. Being open source enables
OpenModelica to be used more freely. For instance, OpenModelica can be
modified by end users to suit their needs better, used in education, or utilized in
projects with less funding or which only want to test the feasibility of simulation
as a tool. In contrast, Apros is mostly used in industry. It is clearly more suitable
for larger projects with the focus being strongly on power plants.

The strong points of Apros lie on process simulation. Apros has more exten-
sive tools, algorithms, and libraries for, for instance, two phase flow phenomena
at power plants. The tools have also been validated with real-world systems.
The purpose-made tools include safety analysis, process design, training, and
automation testing. The libraries have a wide set of components, such as pipes,
valves, and pumps. In addition, Apros includes ready-made models of higher
level components, such as heat-exchangers and reactors. [43]

OpenModelica is a more general domain simulation environment than Apros.
However, it does not yet fully implement all features of the Modelica language,
let alone provide as efficient implementation as the most advanced commercial
Modelica environments. On the other hand, OpenModelica has its strong points,
too. For example, it provides more flexibility than Apros for own algorithm
development. [44]

Chapter 3

OPC Interfaces

OPC1 is an established interface specification for accessing field devices within
control and automation systems; it has become a de facto standard throughout
the industry [45]. OPC UA (OPC Unified Architecture) is the update specification
for the classic OPC. It was developed to improve the classic OPC and to unify
its functionalities under one interface. In this chapter, the OPC interfaces are
presented: the classic OPC is discussed only briefly as the main focus of both
this chapter and the whole thesis is on OPC UA.

To avoid confusion, hereinafter in this thesis the term classic OPC is used to
denote the set of OPC interfaces based on Microsoft technologies. The classic
OPC is discussed in Section 3.1. When speaking of the OPC interfaces, both the
classic OPC and OPC UA are included.

3.1 Classic OPC

The classic OPC is a set of specifications which defines a common interface
for communication between different software packages and hardware devices.
Its purpose is to enable the connection between factory floor devices and
monitoring and control software applications in the domain of process control
and manufacturing automation systems. In this section, the classic OPC is
introduced: the technology upon which it is build is viewed and its applications
are presented. Finally one of the classic OPC specifications, OPC Data eXchange, is
introduced. OPC Data eXchange is a specification responsible for communication
between applications on the same hierarchical level.

1The acronym OPC used to stand for Object Linking and Embedding (OLE) for Process Control.
At present, it denotes open connectivity via open standards.

18

CHAPTER 3. OPC INTERFACES 19

3.1.1 Basis and Applications

From the beginning, the classic OPC was intended to be used to transfer real-
time data between devices and display clients used in automation and control
applications. The devices were usually programmable logic controllers (PLC) or
distributed control systems (DCS). The display clients were supervisory control and
data acquisition (SCADA) systems and human machine interfaces (HMI). Later the
set of specifications was extended for other types of applications as well. The
specifications define a standard set of objects, interfaces, and methods which
enable vendor-independent interoperability between software and hardware [46].
Today, the classic OPC is the de facto standard for industrial integration and
process information sharing [45]. [47]

The classic OPC technology was built upon the OLE, COM (Component Object
Model) and DCOM (Distributed Component Object Model) technologies developed
by Microsoft. These technologies specify interfaces that can be used in passing
objects between processes. The processes can be implemented in different
programming languages and may be either located on the same computer or
communicating over a network connection.

The classic OPC is based on a server–client architecture. A typical use case
for the classic OPC is that a software application acts as a client communicating
with a separate server application. The server application is coupled with a
hardware device enabling an access to the device. The client sends requests
to the server which in turn processes the request and sends a response back
to the client. These requests can be, for example, reading values or sending
commands. [47]

The original motivation for developing the classic OPC was to solve the so
called “I/O driver problem”: without a common interface a special purpose driver
must be written for each application–device pair, as depicted in Figure 3.1(a).
With the classic OPC, each application and server needs to implement only one
common interface (Figure 3.1(b)). In large and complex systems it would be
practically impossible to operate with an individual driver for each such pair.

The first and the most commonly used of the classic OPC specifications is
OPC Data Access (OPC DA). It provides means for real-time data access to the
underlying system behind the OPC DA server. In addition, it defines the general
concepts of the classic OPC used also by the other parts of the specification.

OPC DA can be seen as a solution to the original I/O driver problem. However,
as the classic OPC was wanted to be used in different application areas, a set of
new specifications was needed. One of these specifications is OPC Data eXchange.
It is a specification which defines the communication between two OPC servers.
OPC Data eXchange is described further in the next subsection.

CHAPTER 3. OPC INTERFACES 20

(a) Without OPC (b) With OPC

Figure 3.1: Software applications are connected to hardware devices using either
special purpose drivers or the classic OPC. [48]

3.1.2 OPC Data eXchange

OPC Data eXchange, abbreviated as OPC DX, is a specification part of the classic
OPC. OPC DX is intended to be used for communication between applications on
the same hierarchical level. Whereas OPC DA defines a server–client connection,
OPC DX defines a communication method between two servers. It defines
abstract services to configure the communication between one OPC DX server
and one or more OPC DA and OPC DX servers. This subsection summarizes the
key features of the OPC DX specification [49].

Figure 3.2(a) depicts a typical configuration between OPC DA servers and
clients without any OPC DX capabilities: only server–client connections exist.
With this connection configuration, any data sent from one OPC DA server to
another must pass through OPC DA clients on the enterprise level. OPC DX
adds the possibility to interconnect the servers on the same hierarchical level
without an intermediate client. In Figure 3.2(b), the OPC DX servers can receive
data from any OPC DX or OPC DA servers.

Figure 3.3 depicts the high level architecture of an OPC DX server and its
dependencies to other entities. The connection scheme consists of a source server,
a target server, configuration clients, and ordinary OPC DA clients. The source
server can be either an OPC DA or an OPC DX server, whereas the target server is
an OPC DX server. The configuration clients are ordinary OPC DA clients with
the capability to configure the target OPC DX server using the services defined
in the OPC DX specification. Both configuration clients and ordinary clients
can use the OPC DA interfaces of both the source and the target server in an
ordinary fashion. Generally, multiple source servers may be connected to a target

CHAPTER 3. OPC INTERFACES 21

(a) Vertical integration using OPC DA [48]

(b) Vertical and horizontal integration of OPC DA and OPC DX servers and clients [48]

Figure 3.2: OPC DX adds horizontal server–server connection capability to the classic
OPC. [49]

OPC DX server. For simplicity, an assembly with only one such server–server
connection is discussed in the following.

A connection between a source and a target server is established by the target
OPC DX server. From the viewpoint of the source server, the target OPC DX
server initiates the communication as any OPC DA client. The further operation
is defined by the DXConnection items within the Connection database of the
target server. Each DXConnection defines a connection between one source and
one target item. A source item is an item inside the source server and a target
item is the respective item inside the target server. The target OPC DX server
is responsible for updating the target item when a change in the respective
source item occurs. This is achieved by using the OPC DA read and subscription
functionalities. Target items are shown to all OPC DA and OPC DX clients as
any ordinary items within the target OPC DX server address space.

Configuration clients can configure the connection between the target OPC
DX server and the source server; they are used to map source items to target
items and define the properties of such connections. These properties include,

CHAPTER 3. OPC INTERFACES 22

Figure 3.3: A connection between a source and a target item is established between
classic OPC DX and OPC DA servers. [49]

among others, the update rate. Additionally, configuration clients can specify
the organization of the DXConnection items in the address space of the target
OPC DX server.

3.2 OPC Unified Architecture

Even though the classic OPC is widely adopted in industry, it has its weaknesses.
OPC Unified Architecture (OPC UA) is a new specification whose purpose is
to improve the classic OPC. OPC UA is not a new supplemental part for the
already fragmented classic OPC specification but a unifying specification based
on a new, different architecture. OPC UA is intended to be used wherever the
classic OPC can be used and also in domains not suited for the classic OPC.

OPC UA combines the functionalities of the different parts of the classic
OPC under one specification adding new features as well. A completely new
architecture has been adopted in OPC UA; the technology behind the classic
OPC is becoming obsolete and does not allow all the improvements and features
needed in the new specification. In addition, the base technology behind OPC
UA has been chosen to enable forward compatibility with future technologies
and to add new features. [50]

CHAPTER 3. OPC INTERFACES 23

In the following of this section, the OPC UA interface is introduced from a
more practical viewpoint: the capabilities of the technology are discussed and
compared with the classic OPC. In addition, the uses of OPC UA are considered:
the applications, relevance, current status of the development, and wideness of
the installment base of OPC UA are reviewed. The functionalities provided by
the OPC UA interface are discussed in a more detailed fashion in Section 3.3.

3.2.1 Technical Differences between the Classic OPC and OPC
UA

Even though the higher level functionalities of OPC UA are similar to the
equivalents of the classic OPC, the technical differences beneath the surface are
substantial. In this subsection, the most important technical differences between
the classic OPC and OPC UA are examined on a higher level. The benefits that
result for an end user are discussed in the next subsection. In addition to what
is presented here, OPC UA introduces several fixes to the classic OPC and a
number of new features.

Instead of the DCOM technology, OPC UA is based on service oriented approach
(SOA) paradigm: an OPC UA server exposes all of its functionalities as sets of
services which can be used by OPC UA clients. The specification defines two
different protocols for communication between a server and a client: XML WS
(Web services), which is a widely used standard technology in communication
between computers, and UA Native, a special purpose binary representation.
The XML WS based protocol enables communication with any system that
can communicate using Web services. UA Native enhances the speed of the
connection at the expense of flexibility. [45]

The data structure of OPC UA has been completely reformed to allow richer
definition of the underlying system. The main differences are as follows. First,
the nodes in the information models of OPC UA form a mesh network unlike the
treelike structure used in the classic OPC. Secondly, the amount of metadata has
increased vastly: the actual measurement data is described by a great amount of
structural, semantic, and diagnosis data [45]. Thirdly, OPC UA has a class concept
supported. Real-world items can be modeled as instances of classes (also known
as objects). A similar approach is commonplace in object-oriented programming
languages. The class concept allows custom types to be defined; even real-world
objects such as actuators and sensors can be types [51]. A more detailed view of
the data structure of OPC UA is discussed in Subsection 3.3.1.

OPC UA emphasizes security. Unlike in the classic OPC, in OPC UA the
security mechanisms are a fixed part of the communication. In OPC UA, security,

CHAPTER 3. OPC INTERFACES 24

reliability, and AAA (authentication, authorization, and accounting) are fully
integrated into the specification. The level of security that is provided is sufficient
to enable safe use over an Internet connection. With the security services
implemented in the communication protocol, an application programmer does
not need to pay much attention to it. [45] Nevertheless, for systems with tight
performance requirements, it is still possible to switch the security off [52].

3.2.2 Advantages and Uses

The technical differences allow OPC UA to be used in a broader field of applica-
tion areas than the classic OPC. In this subsection, the advantages of OPC UA
are discussed from a more practical view. In addition, application areas of OPC
UA are presented. Lastly, case examples of real-world applications are presented.

The platform independence is one of the major benefits of OPC UA compared
with the classic OPC. It enables OPC UA to be used in various platforms. The
SOA architecture provides interoperability among many types of devices [45].
With a wide diversity of devices such as PLCs, intelligent modules, and even
embedded devices supporting Web services, the potential installation base of
OPC UA servers is much wider than that of classic OPC servers [53]. Therefore,
OPC UA can be used in connecting not only a hardware device with a software
application but also a software application to another software application or
even a hardware device to another hardware device.

The classic OPC can be used mainly in the plant floor network and the
operations network of a factory for vertical integration. For any other communi-
cation, the classic OPC is quite impracticable. An advantage of OPC UA is its
capability to integrate an overall information system of a company (Figure 3.4).
This capability is due to the information model of OPC UA containing not only
the values of the variables of the system but also a large amount of metadata
describing the variables and their interdependencies in the system. Hence, the
information acquired from the factory floor level can be utilized with ease even
by higher level systems. With Web services as the basis of communication, this
allows the overall information system of the factory to be integrated by using
merely the OPC UA specification as the means of communication. This suggests
that there can be a connection all the way from the factory floor devices through
the process control systems (SCADA, HMI) and up to the process and business
management systems, or even to systems in partner companies. [45]

Figure 3.4 shows an example of a company information system communi-
cating via the OPC UA interface. The PLCs, DCSs, and other data acquisition
systems which control the factory floor devices are connected vertically with
HMI and SCADA systems using the plant floor network. The plant floor network

CHAPTER 3. OPC INTERFACES 25

Figure 3.4: A typical information system of a company integrated with OPC UA

is integrated to the operations network through an aggregating OPC UA server.
The purpose of the aggregating server is to provide higher level functionalities
for upper level systems, such as manufacturing execution systems (MES), and
expose them through the OPC UA interface. The operations network is in turn
connected to the corporate network via another OPC UA server in order to
provide the enterprise resource planning (ERP) systems with the desired function-
alities. This server can also be utilized by external clients beyond an Internet
connection.

The platform independence and the elaborate information model alone
do not ensure safe usage over networks. A data system of a company is often
distributed also to the outside of a factory and may be controlled through an
Internet connection. The use of Web services with efficient security procedures
allows OPC UA to be used over network connections as well [45]. Hence, the
connection between field devices and ERP systems can be established using
ready existing multipurpose physical data connections.

The amount of new features allows OPC UA to be used in a much wider area
of applications. However, one of the goals in the development process of OPC

CHAPTER 3. OPC INTERFACES 26

UA was to retain all of the functionalities of the classic OPC [54]. Hence, OPC
UA can be used practically wherever the classic OPC can be used. As the classic
OPC has already a broad adopter base, it is also crucially important for the new
specification that the migration to the new specification is made easy. Thereby,
the backward compatibility between the two specifications has been ensured: a
general-purpose middleware can be used to map the classic OPC interface to
OPC UA interface [45].

Some real-world applications that already utilize OPC UA are presented in
the following. These examples show the diversity of different application areas
for which OPC UA is suitable:

• In Alpha Ventus Offshore Windfarm, OPC UA is used in communication
between the offshore windmills and the onshore monitoring and control
systems.

• xPAT (eXtended Process Analytical Technology) by ABB uses OPC UA and
ADI to connect different types of analyzer devices. The system is already
running at multiple customer sites.

• Arburg uses OPC UA for high level application integration to VxWorks
based PLCs which control molding machines.

• In Miele, OPC UA is used for connection between HMIs and PLCs over an
Internet connection.

• In Swedwood Älmhult, OPC UA is used for a basic communication within
a factory PLCs and control systems.

• NTE Systems uses OPC UA in energy monitoring and telecontrol in the en-
ergy system of multiple apartment houses over an Internet connection. [55]

The adoption of OPC UA in real-world applications is only starting. Nevertheless,
the aforementioned case examples show that there is a demand for OPC UA
especially for installments in domains that are not very well suited for the classic
OPC.

3.2.3 Disadvantages and Criticism

OPC UA has certain disadvantages compared with the classic OPC. Many of
them are practical aspects which are due to the novelty and the extent of the
new specification. One of the major concerns of the new technology, though, is
the performance. The main performance issues concern data transmission and
computational requirements.

CHAPTER 3. OPC INTERFACES 27

The transfer rates of data networks are constantly increasing but so are system
requirements. With text-based XML messages used in transferring information, a
substantial amount of the bandwidth is wasted from the information throughput
viewpoint. Thus, transferring a certain amount of information is slower than
with the classic OPC; with large quantities of data, the classic OPC can be
roughly 20 times faster [50]. To remedy the slow transfer rate, the UA Native
binary representation can be used. It provides much faster communication; the
speed is nearly the same if not higher than with the DCOM technology [56].
Since the Web services technology is supported by many of hardware devices
and software applications on the market, the use of the binary representation
decreases interoperability and additional work is needed to interpret the binary
representation. Hence, the UA Native protocol is at its best in applications with
high information transfer requirements.

The other performance issue is security. The practice has shown that security
functions require a huge amount of processor time. The security can be turned
off but then other practices need to be used to ensure the trustworthiness of the
connection. A study by Cavalieri et al. [57] has concluded that using security
can take 3 to 15 times as long as without security with small amounts of data.
However, with data packages of more than one kilobyte the difference becomes
much smaller: a connection with security takes only double of the time than a
connection without security.

For an application programmer, the new specification gives additional work-
load. Because of the extent and elaborateness of the specification, plenty of work
has to be done even when creating small applications [58]. Even though the
whole interface does not need to be implemented, the amount of work to achieve
at least some minimal functionality is much greater than with the classic OPC.
The OPC Foundation offers help by providing communication stack reference
implementations in C, C#, and Java languages and sample client and server
applications for C#. However, to build a software application upon a mere
communication stack is very time-consuming. If C, C++, or Java is chosen as the
language, using a commercial product to implement the required service sets is
practically mandatory.

Another issue is the installed base. Since OPC UA is a fairly recent specifica-
tion, not as many products support OPC UA than the classic OPC. Thus, the
interoperability cannot be fully utilized. There is no guarantee that OPC UA will
gain a status similar to that of its predecessor. Only time will tell whether the
new features will prove to be necessary enough that users of old systems will
change over from the classic OPC to OPC UA and new systems will be designed

CHAPTER 3. OPC INTERFACES 28

with OPC UA as the means of communication. The current status of this topic is
discussed in the next subsection.

3.2.4 Status and Future Development

In this section, the status of OPC UA is presented from two different viewpoints.
First, the status of the specification itself is presented. Secondly, the status of
OPC UA products available is viewed. The following presentation is based on
the status of November 2011.

The 13 parts of OPC UA are shown in Figure 3.5. All the core specifications,
that is the first 11 parts, of OPC UA have been released. The parts 12 and 13
have been published as drafts only and are still under development. They are
planned to be released in 2012. The released parts are also still being improved:
clarifications as well as new features and enhancements are being added. [59]

Figure 3.5: The 13 parts of the OPC UA specification [60]

One of the targets for OPC UA is that it will become an IEC standard (Interna-
tional Electrotechnical Commission standard). The parts 1 through 6 and 8 have
been released as the IEC 62541 standard. Parts 7, 9, and 10 are waiting for the
final voting and will presumably be released in April 2012. The standardization
of the last three parts is planned after 2012. [59]

CHAPTER 3. OPC INTERFACES 29

The companion specifications are an important element of OPC UA. These
specifications provide standardized domain-specific information models which
can be used to connect different applications within the information level of a
factory. The four released companion specifications are DI (OPC UA for Devices),
ADI (Analyzer Device Integration), FDI (Field Device Integration), and OPC UA
for IEC 61131-3. [59]

The number of OPC UA products available is increasing but is still only about
a tenth of the number of classic OPC products. [48] However, the migration from
the classic OPC to OPC UA is strong: most of the major OPC server and client
vendors have changed to OPC UA [61]. For the first time in 2011, the amount of
new OPC UA products was greater than that of new classic OPC products. At the
moment, however, use cases in real environments are only starting. Nevertheless,
automotive and chemical companies, for instance, are evaluating OPC UA in
their use cases. [59]

The classic OPC is the strongest competitor of OPC UA. It is estimated that
the classic OPC is sufficient for about 80 % of industrial integration needs. Hence,
there is usually no need to replace an existing classic OPC installation with
an OPC UA equivalent. Typical applications for OPC UA are such for which
a classic OPC implementation would be impractical or impossible. On one
hand, these applications are such that need low level communication between
field devices. On the other hand, OPC UA is much better suited for high level
communication in factory management level systems with different operating
systems and programming languages. [62]

One of the goals of OPC UA is that it can be used for communication in all
information levels in a factory. At the moment, many MES and ERP system
vendors have implemented the OPC UA interface in their products. However, the
problem is that currently the products on the lower levels are not yet provided
with the OPC UA interface. [63] A framework for connecting a whole factory
using OPC UA is being developed by companies such as Valio and Neste Jacobs.
The target is that all connections between the numerous devices and applications
in a whole factory will rely mainly on OPC UA. Both horizontal and vertical
connections are being developed to replace the wide variety of communication
interfaces used at the moment. [64] [65]

One of the target application areas of OPC UA is embedded products. The
platform independence of OPC UA has allowed installations for Windows, Linux,
Android, and Apple iPhone and iPad, among others. For iPad, for instance,
maintenance and configuration applications have been developed. [66] The
OPC UA for IEC 61131-3 companion specification allows PLC–PLC connection
between devices of different vendors, and thus no additional target PCs are

CHAPTER 3. OPC INTERFACES 30

required [63]. Companies such as Beckhoff Automation and Bosch Rexroth,
among others, are currently developing OPC UA for IEC 61131-3 products and
first of them are already available. [59] [61]

3.3 Functionalities of OPC UA – a Detailed View

In the previous section, OPC UA was compared with the classic OPC and its
higher level properties were discussed. In this section, a more detailed view of the
functionalities provided by the OPC UA interface is presented. The specification
is very large and thus only the most relevant concepts of the interface are
discussed. The emphasis is on areas which have greater importance for this
work.

3.3.1 Address Space Model

For a deeper understanding about the functionalities the OPC UA interface
provides, a short introductory to the address space model of OPC UA is given,
along with a simple example. An OPC UA server contains an address space
model which is a representation of the real system behind. The precise definition
of the address space model can be found in the OPC UA Specification Part 3:
Address Space Model [67].

The OPC UA address space model contains plenty of metadata which can
be used to describe the properties of the various items and phenomena of the
real-world system. As briefly mentioned before, a user can create self-made
types to define the items in the system. These types define the general properties
of the items they are associated with, not any specific data of a certain item.
As an example, a ThermometerType type could be created to describe a general
temperature sensor object and how it is linked with other parts of the system.

The address space of OPC UA consists of nodes. Each node belongs to a node
class (Variable, Object, or Method, for instance) specialized from the BaseNode class,
as is depicted in Figure 3.6. For example, the ThermometerType type definition
presented above would belong to the ObjectType node class since it describes
the properties of an object. Based on the type definition, a thermometer object,
belonging to the Object node class, can be instantiated to represent a temperature
sensor in a real-world system. Nodes are in relation to other nodes via references.
In this way, individual nodes can be linked together in the address space model
in a similar fashion to how their counterparts are connected in the real world.
For example, a thermometer object could be connected to its temperature variable.
The relation could be defined as temperature being a component of thermometer.

CHAPTER 3. OPC INTERFACES 31

Figure 3.6: A node in the OPC UA address space model belongs to one of the node
classes and has a fixed set of attributes depending on the node class. [51]

Nodes have attributes. Attributes serve as the descriptions of a given node.
The use of attributes is strictly fixed and is defined by the node class, which
prevents the user from creating or using custom attributes. For example, the
temperature of a thermometer has a Value attribute (each variable has a Value
attribute) which contains a floating point number, such as 22.0, expressing the
result of the measurement.

Figure 3.7 shows a slightly reduced view of the address space of the OPC UA
server in the thermometer example. The address space has a root node, marked
with a slash (/), of which type definition is FolderType; such nodes can be called
folders. The root node organizes Objects and Types of which type definition is also
FolderType. The Types folder contains all the type information needed to describe
the system, including definitions for folders, thermometers, and temperatures.
The Objects folder contains the objects and the variables of the system. In this
example, there is only one object, namely thermometer, which in turn has a
HasComponent reference to temperature. Both thermometer and temperature have

CHAPTER 3. OPC INTERFACES 32

Figure 3.7: The address space of the thermometer example

references to their definitions organized by the Types folder. The reading of
thermometer is shown in the Value attribute of temperature. Even though not in
full view, all the other nodes as well include a defined set of attributes.

Even when the data structure of the address space is a graph, it can be
flattened to a tree. Hence, the address space of OPC UA can model treelike
structures as well as be viewed by software understanding merely treelike
structures. The discussed thermometer example, for instance, can be flattened to
a tree by making copies of such structures to which more than one reference is
pointing. For example, the TemperatureType type is referenced by both temperature
and ThermometerType nodes. Hence, two TemperatureType types need to be
created, one for each node to be referenced by.

CHAPTER 3. OPC INTERFACES 33

3.3.2 Services

The functionalities that OPC UA provides are called services. These services
are grouped into service sets. The services are described in more detail from
an abstract point of view in OPC UA specification Part 4: Services [68]. In
the following, the service sets are further grouped to correspond better to the
functionalities shown to end users.

• The Discovery, SecureChannel, and the Session service sets are used in
establishing and maintaining the communication channel. The Discovery
service set is used to obtain information about a server, the SecureChannel
service set to open the connection between a client and a server, and the
Session service set to handle the connection in the context of a session.
These service sets are not discussed further.

• The View and Query service sets can be used to browse the address space.
These services enable discovering the objects, variables, and the methods
in the address space in addition to their relationships and attributes. Using
these services is somewhat analogous to browsing a file system of an
operating system, the difference being that in this case the data system is a
mesh network instead of a tree. The two service sets enable acquiring the
real-time state of the address space. Additionally, they allow accessing the
address space of a certain point in time in history.

• The Attribute service set allows reading and writing the values of attributes,
including the Value attribute. The service set allows also an access to the
history of attributes and events.

• The Method service set allows calling methods of objects. The most im-
portant methods in the scope of this project are simulation control and
synchronization methods such as starting, interrupting, and continuing
the simulation.

• The MonitoredItem and Subscription service sets are responsible for mon-
itoring the values of attributes. The monitoring can be based on either
polling or events. A basic use case in the polling-based approach is that
the OPC UA server publishes the value of an item being monitored at a
user-defined interval. In an event-based approach, the value of the item
being monitored is published to the client when a large enough change in
the value has occurred. Additionally, there are a numerous other ways to
use the service sets; these different modes of operation are not described
further in this thesis.

CHAPTER 3. OPC INTERFACES 34

• The NodeManagement service set provides tools for adding and deleting
nodes and references between them. In the scope of this project, this feature
is not used and shall thus not be further discussed.

3.3.3 Exchanging Data

OPC UA does not include a data exchange specification similar to the clas-
sic OPC DX presented in Subsection 3.1.2. Neither does OPC UA specify a
general scheme for server–server connection. The Aggregates part of the OPC
UA specification [69] is the only one that defines one type of a server–server
architecture.

The main purpose of the Aggregates specification is to provide aggregate
information from multiple sources of raw data. It defines a number of aggregate
objects, functions, and data types. An aggregate server uses browse, read, and
subscription to obtain data from its underlying OPC UA servers. It uses this data
to calculate the values of the variables in its own address space. The aggregation
is hidden from the clients: a client browsing an aggregating server does not
implicitly know whether the server is an aggregating server. An aggregating
server can be used, for example, to calculate the average value of a variable in
time. Another example is to combine multiple variables in multiple servers to
calculate the value of an aggregating variable. [69]

Data exchange is intended to be based on server aggregation in OPC
UA [69] [70]. However, using such an approach leads to different behavior
to that of the classic OPC DX. The variables in the underlying server are shown
as any nodes in the address space of the aggregating server. Any service call from
an OPC UA client is passed through the aggregating server to the underlying
server; that is, a read operation will read the variable in the underlying server
and a subscription will monitor the real item on the underlying server. This
is different from the classic OPC DX specification where the OPC DX server
maintains local copies of the source items. Hence, any read in OPC DX server
will read the value of the target item instead of acquiring the current value of
the source item.

Alternatively for the Aggregates specification, a proprietary architecture
for data exchange can be developed. One way is to create an external OPC UA
client to manage all communication between the servers. This method will lead
to increased overhead in data transfer, though. Another way is to equip the
OPC UA servers with ordinary OPC UA client capabilities. The servers can then
communicate with each other without any excess middleware. In both of these
solutions, variable values in the clients depend on the update rate they use to
subscribe the variables in the other OPC UA servers.

CHAPTER 3. OPC INTERFACES 35

Little is currently being done to define a common specification for DX-like
functionality in OPC UA by the OPC Foundation. At the writing of this thesis,
nothing about the subject has been published. Nevertheless, there is intention to
develop a common means for such data exchange in the future, at least to some
extent. [71]

Chapter 4

Research Approach

The experimental part of this thesis consists of designing and implementing the
synchronization mechanism of the co-simulation environment and of testing
its operation. This chapter introduces the items that are implemented and the
tests that are used to evaluate the implementation. In addition, the tools and
equipment used in this work are presented.

4.1 Design and Implementation

Creating the synchronization mechanism consists of the following subtasks:

1. Developing the OPC UA server interfaces for OpenModelica and Apros

Within the co-simulation environment, the simulators communicate with
each other solely via OPC UA. In addition, OPC UA interface enhances the
simulators with a standard I/O interface. External applications can access
and control the simulators via OPC UA.

2. Developing the OPC UA client interfaces for OpenModelica and Apros

Within the co-simulation environment, the simulators can access and
control other simulators using the OPC UA client. Additionally, the OPC
UA client features allow OpenModelica and Apros to access and control
applications implementing the OPC UA server interface.

3. Designing and implementing how multiple simulators are synchro-
nized

The design and implementation of the synchronization utilizes server–
server OPC UA connection between Apros and OpenModelica simulations.
The synchronization mechanism is designed to support any topology of
simulators, even with cyclic connections. The most important aspect in the

36

CHAPTER 4. RESEARCH APPROACH 37

implementation is to develop the core components of the synchronization
with a high performance in communication.

4. Designing and implementing how the connection between the simula-
tors is managed

The connection between the multiple simulations is configured and stored
by an ad hoc proprietary software component embedded in the co-simulation
environment. The connection can be configured through the OPC UA
servers of the simulators.

The chosen design and its rationale are presented in Chapter 5 on a higher
level. In Chapter 6, the implementation is presented with a more technical
viewpoint.

4.2 Tests

The design and implementation need to be tested in order to achieve the goals
set in the introductory chapter. These tests are shortly described in this section.
The objective of the tests is to ensure that the core functionalities of the im-
plementation operate adequately. The more detailed descriptions of the tests,
including the results and discussion, are presented in Chapter 7.

In the basic control model co-simulation test, a simple co-simulation experi-
ment is run in order to make a simple quality evaluation of the co-simulation
environment. The response of the co-simulation is reflected against the response
of the equivalent simulation done with only one simulator. The purpose of this
test is to acquire some general knowledge on the effects caused by the division of
the simulation model.

The scalability test measures the scalability of the communication in the
co-simulation mechanism implementation. In other words, the test aims at
determining the maximum amount of items in the communication between the
multiple simulators. The publish rate of the connection is also examined. The
purpose of this test is to determine the feasibility of utilizing the implemented
synchronization mechanism with larger co-simulation models.

One goal of this work is to manage a co-simulation with more than two
simulators. The topology of a co-simulation describes the interconnections
between the multiple simulators. The multiple simulators can be connected
together in a number of different topologies. Thus, to evaluate whether the
co-simulation environment operates properly with multiple simulators, different
topologies of simulator connections must be tested.

CHAPTER 4. RESEARCH APPROACH 38

The OPC UA server as such is not tested in this work. However, the scalability
tests conducted with the co-simulation environment can be used to do certain
conclusions about the plain OPC UA server as well.

4.3 Tools

In this section, the most important tools used in the experimental part of this
thesis are presented. In addition to the software, the basics of the hardware are
presented to help evaluate the test results.

The computer on which the tests have been run is Intel Core™2 Duo CPU
E8400 @ 3.00 GHz, 3.21 GB RAM. The implementation is running on Windows
XP Professional Version 2002 Service Pack 3. OpenModelica is compiled with
MinGW and Apros and the OPC UA and synchronization implementation with
Visual Studio 8 and 9.

The latest version of Apros is Apros 6 which has radical changes from the
previous version. Instead of Apros 6, however, Apros 5.10.02 is being used in
this work since the means for implementing the OPC interfaces in Apros 6 is yet
undecided. The OpenModelica used in this thesis is version 1.7.0 [72], which
was the latest stable version when the performance evaluations were started.

The Unified Automation C++ SDK (software development kit) [73] version
1.3.0 is used to implement both the OPC UA server and client. The SDK provides
implementations for, among others, the service sets of OPC UA, helper classes
for frequently used functionalities, and security handling. The C++ SDK is a
reasoned choice since the most parts of OpenModelica and Apros are written in
C++ as well. In addition, the UaExpert OPC UA client by Unified Automation [74]
is used for testing purposes.

Chapter 5

Design

In this chapter, the design for the co-simulation environment implementation
is presented. The different parts of the work are discussed on a higher level,
different architectural approaches are compared, and the chosen architectural
approaches are justified.

5.1 Qualitative Goals of the Design

In the introduction of this thesis, the main motivations and goals were presented.
To meet those objectives, the design of the co-simulation environment needs to
implement the following quality attributes:

• Modularity and reusability

The co-simulation environment implementation is divided into modules.
This allows most parts of the implementation to be used in both Apros
and OpenModelica. In addition, the implementation is connected with the
underlying simulation application via a rather simple interface. There-
fore, reusing the co-simulation environment implementation with other
simulation software as well will be relatively easy.

• Efficient connection

The OPC UA server has short response times in the basic operations.
This implies that, in addition to the plain OPC UA server, both internal
and external communication in the co-simulation environment function
efficiently. At least a fast publishing cycle of a subscription is needed,
but also read and write operations should be efficient. At minimum, a
publishing cycle of 200 milliseconds is required. In process simulation,
a publishing cycle shorter than 50 ms is seldom needed [44] and thus
achieving faster publishing cycles is not striven for. When the OPC UA

39

CHAPTER 5. DESIGN 40

connection is implemented efficiently, it can be used in target applications
with soft real time constraints.

• Scalability

Both the OPC UA interface implementation and the whole co-simulation
environment are scalable. It means that increasing the amount of items in
communication does not affect the response time too severely.

In this thesis, both the performance and scalability of the connection are
evaluated. The details of the evaluation and results are presented in Chapter 7.

5.2 Architecture of the OPC UA Server

As mentioned above, the target is to use the OPC UA server implementation
in both OpenModelica and Apros. Thus, it is reasonable to use a design sim-
ilar to what is applied in Apros with the classic OPC server implementation
(OPCDAKit): the OPC UA server maps the Adda interface of Apros to the OPC
UA interface. In addition, the OpenModelica frontend is created to implement
the Adda interface in OpenModelica. The OpenModelica frontend is basically
an Adda interface implementation in OpenModelica. The Adda interface is
discussed more thoroughly in Subsection 6.1.1.

The OpenModelica frontend allows broader interoperability. In addition to
the OPC UA interface, the Adda interface allows OpenModelica to communicate
through the classic OPC DA and OPC XML-DA interfaces by using OPCDAKit
and OPCXMLKit of Apros. Even though wrapper software which map the OPC
UA interface to the classic OPC exist, they add an extra layer of abstraction in
communication which potentially decreases the performance. Therefore, using
these ready made OPC kits is considered beneficial.

Two different architectural approaches for the OPC UA server were consid-
ered: The first alternative is to implement the OPC UA server as a DLL and
integrate it as a fixed part of the simulators. The second alternative is to let
the OPC UA server operate independently from the simulators and have its
own means of communicating with the underlying simulations. These two
solutions offer the following mutually exclusive properties: the former has high
computational efficiency whereas the latter allows flexibility to modify the
simulation model without disconnecting the OPC UA server from clients in
OpenModelica.

In the static solution depicted in Figure 5.1, the OPC UA implementation is
similar to the classic OPC DA implementation already in use in Apros. Unlike in
Apros, however, OpenModelica simulation models cannot be modified run-time

CHAPTER 5. DESIGN 41

and thus making changes to the model would yield to recompiling. The Adda
interface is provided with functions that allow the simulation model to change
while the server is operational but they can be utilized in Apros only. In addition
to the OPC UA server DLL, the OpenModelica frontend needs to be implemented
for the Adda connectivity in OpenModelica.

Figure 5.1: The static solution: Both OpenModelica and Apros incorporate an OPC
UA server. Optionally, they can be connected to the OPC DA, OPC XML-DA, or the
Simulation Control interfaces via the OPC kits.

The dynamic solution differs from the static solution by using a middleware
component between the frontend and the OPC UA server. When a model change
occurs, only the connection between the old model and the OPC UA server is cut
after which a connection to the new model is established. One possible technique
to implement the dynamic approach is to utilize the Aggregates specification,
as is depicted in Figure 5.2: A static implementation of the OPC UA interface
is first embedded in the two OpenModelica simulations. This static OPC UA
connectivity is in turn used as the means of communication between the dynamic
OPC UA server and OpenModelica. The OPC UA frontend is responsible for
mapping the address space of the simulation model to the address space of
the dynamic OPC UA server. When the dynamic OPC UA server is started, it
establishes a connection to the OpenModelica simulation 1 via the OPC UA
interface. When the model is modified and thus the OpenModelica simulation 2
generated, the connection to the first simulation is cut and a new one is created
to the simulation 2.

The two solutions described above have considerably dissimilar capacity
demands as they emphasize the two mutually exclusive quality attributes:

CHAPTER 5. DESIGN 42

Figure 5.2: The dynamic solution can utilize the static OPC UA interface in commu-
nication between the dynamic OPC UA server and OpenModelica simulations.

computational efficiency and flexibility. When used in model based control in
the destination process, there is no need to provide the ability to modify the
model. When designing the co-simulation model, though, this feature would be
needed by the modeler; with the static solution, the whole co-simulation cluster
must be restarted every time a change is made to either any of the simulation
models or to any connection between any pair of simulators in the cluster. On the
other hand, the modeler does not necessarily need the computational efficiency
which is needed in real-time control. Since efficiency limits flexibility and vice
versa, both of the different architectural approaches should be implemented in
order to support both of these use cases. Since the efficiency of the connection is
the major goal of the OPC UA server, the static solution is implemented in this
work. It is, however, conceivable that the static implementation can be reused to
develop the dynamic solution later.

5.3 Synchronization

The literature is used to study the various different synchronization implementa-
tions utilized in co-simulation. However, only a small percentage of the studies
on distributed, parallel, and cooperative simulation have been made around
continuous simulators. To try to use any synchronization scheme created for
PDES simulations is not very well advised. Hence, the various different ad hoc

CHAPTER 5. DESIGN 43

synchronization schemes for continuous co-simulation presented in literature
are pondered.

Three different ways to control the co-simulation cluster have been used in
literature:

1. a centralized controlling unit to synchronize the simulators and mediate
data between the simulators,

2. a centralized controlling unit to only synchronize the simulators, and

3. autonomous units that synchronize themselves and change data without
external middleware.

As mentioned before, a co-simulation problem similar to the one in this thesis
has been presented by Santos et al. [14]. Hence, their design is taken as a starting
point of the development. However, certain improvements to the synchronization
mechanism are proposed in this thesis.

The framework by Santos et al. employs a middleware client for synchroniza-
tion and passing data. To decrease the amount of communication, the central
orchestrating unit concept is discarded. Instead, the cluster of simulators is
mostly self-organized: The simulators synchronize themselves by sending each
other messages of their state. In this concept, each simulator is concerned that its
own needs are met and that every one that needs it is satisfied as well; that is, the
simulation can proceed if and only if all the required subscriptions from other
simulations have been received and all the subscriptions have been published
for all the subscribers.

It could be argued that the design presented is not generally an improvement:
A very large full mesh network of simulators may in fact suffer from scalability
issues. This is because each simulator must send the information of its state
to all of the other simulators one by one. Furthermore, if a set of variables
are subscribed by more than one simulation, the same publish needs to be
duplicated for each of the subscribers. Nevertheless, in the more likely use
cases which employ a topology of simulators with only a few connected pairs
of simulations, the amount of event notifications and subscription publishes
is smaller. In addition, all latencies in interconnections are shorter since no
additional intermediate steps exist in the communication.

The barrier technique is chosen as the synchronization mechanism in this
work. It is a technique which has been utilized in synchronous co-simulation in
literature as well. The barrier technique has also been used in distributed Apros
simulations.

Figure 5.3 depicts a simplified version of the sequence diagram of the
chosen design: When the simulation executables are launched, they create the

CHAPTER 5. DESIGN 44

OPC UA Client Simulation 1 Simulation 2

Subscribe()

Subscribe()

Initialize
Initialize

Start()
Run(tick)

Publish()

Publish()

Simulate Simulate

Run(tick)

Publish()

Publish()

Simulate

Simulate

Run(tick)

Publish()

Publish()

Simulate Simulate

...

Figure 5.3: The sequence diagram of the synchronization mechanism

subscriptions to each other (Subscribe()). When the OPC UA client sends a start
request (Start()) to either of the simulations (here Simulator 1), that simulator
commands the other one to proceed till the next sync point (Run(tick)) and
proceeds to the next sync point itself as well. When a simulator has reached
the first sync point, it publishes the subscriptions (Publish()) and waits for the
other one to do likewise. When the Simulator 1 has published and received
its subscriptions, it sends the next start request (Run(tick)) to initiate the next
iteration.

CHAPTER 5. DESIGN 45

The synchronization mechanism presented introduces two main sources
of error. First, the error generated by the algorithms that evaluate the model
numerically is in relation with the length of the sync interval. Secondly, a sync
interval that is not a multiple of a simulation iteration causes error. Selecting a
sync interval which is adequately short and a multiple of any simulation iteration
will decrease the error. This sync interval selection is left on the responsibility of
the end user.

5.4 OPC UA Client and Connection Configuration
Management

To enable server–server communication, an OPC UA client is embedded in
the OPC UA servers of OpenModelica and Apros. The client is used to receive
variable values from other simulators and to control the other simulations. The
connection between a pair of simulators needs to be defined; that is, what vari-
ables are transmitted and how their values are used. The design for configuring
and storing this connection is explained in this section.

OPC UA does not specify in detail a method that could be used for server–
server connection. Thus, the configuration management definitions are strongly
based on the classic OPC DX interface introduced in Subsection 3.1.2.

To efficiently acquire data from other simulations, subscription is used. It
could be argued that data could be mediated by using the write functionality
instead, as it is done in the design by Santos et al. However, a number of reasons
favor subscription: First, if write was used, utilizing the design with third
party OPC UA compliant applications would be much more difficult, since they
would need major modifications. Secondly, subscription is used in the OPC
DX specification as well. Thirdly, the current way of communication between
multiple Apros simulators is based on a similar design.

Only a very simple OPC UA client is needed in this work: in addition to
establishing a connection, only subscriptions and methods are used. As creating
a client which could use other applications with an OPC UA server is not a goal
of this thesis, the client is designed to be used in co-simulation only. Nonetheless,
the client is implemented in a way which allows it to utilize any OPC UA
compliant application in the co-simulation environment with only a few simple
additional functionalities implemented into the included application. Since
the client implementation itself has few noteworthy details, it is not discussed
further in detail.

CHAPTER 5. DESIGN 46

A connection configuration manager is embedded in the synchronization
mechanism. To allow early testing with the whole synchronization mechanism,
the target is to create a format which can be easily modified both with a text
editor and via OPC UA. The numerous advantages of XML make it a self-evident
choice for the technology to store the configuration. Since the focus of this
work is to create the co-simulation environment, the connection configuration
manager is designed to be utilized mainly in synchronous simulation.

The potential of the rich address space model of OPC UA is not utilized
much in the connection configuration. The main reason for not doing so is that it
would not help achieve the main goals of the thesis. Additionally, one reason
why a more expressive representation is not implemented is that the DX-like
functionality in OPC UA is yet undefined.

An alternative – not necessarily a competing one but more of an enhancement
– for defining the connection information would be to use the abilities of the rich
information model of OPC UA: The address space of the server containing the
source items could be embedded in the address space of the OPC UA server where
the target items lie. All the connections could then be modeled as references
between the source and target variables. However, this approach introduces two
major issues: First, only the most basic information about the connection can be
expressed with such a reference. This information could consist of the locations
of the source and target variables and of the server in which the source item lies.
Any other information must anyway be presented with some other means in the
address space. Secondly, it seems that little or no advantage could be achieved
for the main objective of this thesis by developing such a design.

Chapter 6

Implementation

In this chapter, the implementation is discussed in a more detailed fashion. First,
the plain OPC UA server implementation is introduced. After that, the synchro-
nization implementation is presented. Finally, the connection configuration
manager is viewed.

6.1 OPC UA Interface in OpenModelica and
Apros

The OPC UA server is implemented into the simulators similarly to the classic
OPC interfaces are implemented in Apros. The OPC UA server is a DLL which
communicates with the simulation via the Adda interface. First in this section,
the Adda interface is presented in detail. Secondly, The OpenModelica frontend
implementation is described shortly. Finally, the details of the OPC UA server
implementation are discussed.

6.1.1 Adda Interface

As mentioned earlier, Adda is the interface used in Apros for external I/O. The
Adda interface is utilized by the OPC kits to enable the classic OPC connectivity
in Apros. The Adda interface is a relatively small definition being merely a
collection of functions which can be used by external software to communicate
with simulator software. Adda does not, however, specify as comprehensive
a communication solution as OPC UA. The Adda interface is developed for
communication quite similar to what can be achieved by using the classic OPC
DA interface. In addition, a set of commands has been added for simulation
control purposes. A more detailed view of the Adda interface can be found in its
technical report [75].

47

CHAPTER 6. IMPLEMENTATION 48

The address space of Adda has much in common with the classic OPC. Adda
as well can be used to process treelike structures only. The address space behind
the interface consists of branches and items. A file system analogue for a branch
is a folder and for an item a file. The sole functionality of the branches is to
organize items. An item consists of the value of the item and a small amount
of metadata describing the item. In general, however, little metadata of the
underlying simulation is available through Adda.

The Adda interface consists of functions of four different types:

• The first set of functions is the utility functions, the main purpose of which
is to initiate and terminate the connection.

• The second set of functions is for browsing the underlying database: the
functions provide a similar means of scanning the database than what is
achieved by using the OPC interfaces.

• The third set of functions is for data access. To be exact, these functions
allow merely writing data to the simulator; reading a value is executed
by accessing the data directly by using a pointer to the item inside the
simulator. In addition, the data access functions incorporate functions
used in the reverse direction: the simulator can inform of a change either
in the simulation model or in a value of a variable in communication.

• The fourth set of functions is for simulation control: the means to start, pause,
and continue the simulation are provided among other functionalities.
This set of functions adds general support for events, too.

An additional layer of abstraction drops the performance of the system
a certain amount. Adda is a very lightweight interface, though. Since Adda
enforces no additional copying of values or using of complex data structures, it
does not add much computational overhead to the communication.

6.1.2 OpenModelica Frontend

To allow the OPC UA server to be connected to OpenModelica, the Adda interface
is implemented into OpenModelica. This implementation is referred to as
the OpenModelica frontend. Since all of the functionalities of Adda are not
necessarily needed in this work, only a subset of the functions of Adda is
implemented. The OpenModelica frontend implementation is available in
OpenModelica SVN [76].

The Adda interface provides little support for representing metadata which
gives limitations to utilizing the structural representation of Modelica. Thus,

CHAPTER 6. IMPLEMENTATION 49

for instance, the class information about the objects in the model cannot be
transferred via Adda. Even then, the provided metadata is sufficient for all basic
operations needed in this work.

In addition to the Adda interface implementation, certain COM interface
initialization functions have been implemented into the frontend. These func-
tions allow the implementation to be validated against the classic OPC DA
implementation, OPCDAKit. For that purpose, a few Adda functions unused by
the OPC UA server are also implemented.

6.1.3 Implementation Details of the OPC UA Server

In this section, the main details concerning the OPC UA server implementation
are further discussed. Basically, the implementation is a mapping from the
Adda interface to the OPC UA interface. The functionalities of the OPC UA
interface are implemented only to a certain extent. With the restrictions caused
by the Adda interface, it would not be even possible to implement a system
supporting all the functionalities provided by OPC UA. In the scope of this work,
the target is to implement basic functionalities to enable browsing the address
space, reading and writing values, and subscribing for variable values and events.
The Adda interface is strongly based on the classic OPC DA interface which has
many similarities with OPC UA. Nonetheless, there are significant technical
differences as well, which leads to difficulties in the implementation. In addition,
the OPC UA interface needs to be slightly modified for a desired outcome. The
modifications are also described in this subsection.

The address space of the underlying simulation is mapped to the address
space of OPC UA in a straightforward manner. The Adda interface can handle
only trees with branches and items. Hence, the address space of the simulation
is mapped to the OPC UA address space as a tree as well. An example OPC
UA address of an OpenModelica simulation is presented in Figure 6.1. The
proprietary part of the address space is the Simulation object. Objects and
components of OpenModelica and Apros are presented hierarchically as objects
and variables under the Simulation object.

The simulation control functions of Adda responsible for starting and inter-
rupting the simulation are mapped to OPC UA method calls in a straightfor-
ward manner. The four methods implemented are Start(), Stop(), Step(), and
Run(seconds):

• Start() starts the simulation,

• Stop() pauses the simulation at the end of the ongoing iteration,

CHAPTER 6. IMPLEMENTATION 50

Figure 6.1: An example OPC UA address space

• Step() advances the simulation one iteration, and

• Run(seconds) starts the simulation and pauses when the time given as a
parameter has elapsed.

The simulation control methods are placed under the Simulation object in the
OPC UA address space.

Adda interface uses a grouping methodology similar to that of the classic
OPC. According to the performance evaluation made for the classic OPC DA by
Iwanitz and Lange, the performance of the communication does not depend
much on the amount of groups used in communication [77]. Hence, in this
implementation, it is seen reasonable to use only one group for all items in
communication when communicating through Adda.

Instead of real time, the clock of the OPC UA server advances at the same
rate than the simulation time. To be precise, the time of the OPC UA server is
server initialization real time added with the simulation time. Even though

CHAPTER 6. IMPLEMENTATION 51

a real time clock is utilized in the internal behavior of the server, all external
behavior is based on the simulation time. Thus, all timestamps, subscriptions,
and events are dependent on the simulation time. This approach is similar to
what is already in use in the classic OPC implementation in Apros. A possible
risk in this approach is that third-party software may not function supposedly.
However, not any problems have been discovered with any OPC UA or classic
OPC third party software products due to this modification.

The OPC UA specification states the following: The sampling interval is
the fastest rate which an OPC UA server uses to sample its underlying source.
Moreover, the sampling interval is the fastest rate at which an OPC UA server
serves its clients. [68] The consequences of these definitions are shown in
Figure 6.2; a change in the underlying system is visible after a varying delay.
To achieve deterministic behavior, this uncertainty is unacceptable since any
additional delay affects the result of the co-simulation.

Figure 6.2: Delay in detecting a change in the real system [68]

Due to the abovementioned nondeterministic nature of OPC UA, certain
parts of the SDK used in the OPC UA server implementation are based on
polling. This is harmful for high performance since the polling of values creates
additional overhead to the communication. However, since modifying the SDK
to work asynchronously would require enormous amounts of work, the polling
based approach is mostly used with the exception of subscription publishes: The
target is that a change of data at simulation time t is sampled and published at
time t as well. Thus, a subscription is published only after the simulation has

CHAPTER 6. IMPLEMENTATION 52

paused and the sampling is completed. The target is achievable, since the clock
of the OPC UA server is stopped during this whole procedure.

6.2 Technical Details of the Synchronization Mech-
anism

To synchronize the multiple simulations, a piece of software labeled as the
synchronizer is implemented as a part of the OPC UA server. If the synchronous
simulation is enabled in the OPC UA server, the synchronizer is started after the
OPC UA server has been initialized. The synchronizer is responsible for control-
ling the underlying simulator and communicating with the other simulators in
the cluster using an OPC UA client.

In this thesis, the following definitions apply:

• An OPC UA client which subscribes synchronously data from simulation S

is a subscriber of simulation S.

• An OPC UA server which is subscribed synchronously by simulation S is a
subscribee of simulation S.

Even though this thesis is concerning synchronized simulators within a cluster,
these definitions apply to any software that acts similarly. For example, if the
co-simulation environment was further developed, simulated DSCs or other
applications could be embedded in the synchronization. These applications can
be either external or internal to the actual co-simulation cluster. In the contrast,
when speaking of external OPC UA clients that subscribe to any OPC UA server
within the co-simulation cluster, the term external OPC UA client is used. These
clients do not subscribe the co-simulation servers in a synchronized manner, or
if they do, they use some synchronization scheme of their own.

The synchronization is based on a fixed time step; that is, all of the simulators
in a cluster have identical sync points and the length of every sync interval is a
constant. The synchronizer within each OPC UA server advances the underlying
simulation to the following sync point by calling run(seconds) of the Adda
interface with the sync interval length as the attribute.

The synchronizer uses two OPC UA methods to communicate with other
simulations. One of these methods is InitSync(URL, syncInterval, clusterId),
where URL (uniform resource locator) is the URL of the caller, syncInterval
the sync interval of the co-simulation cluster, and clusterId an identifier to
define which connection configuration is used. When a simulator wants to
join a co-simulation cluster and make subscriptions to other simulators, it

CHAPTER 6. IMPLEMENTATION 53

calls the InitSync method of each simulator to which it wants to subscribe.
The other method is ProceedToSync(simulationT ime), where simulationT ime

is the end time which the simulation is allowed to execute to. When a simu-
lator in the cluster has received all subscribed values of one of its subscribees
and acted accordingly, it calls the ProceedToSync method to inform that sub-
scribee that it may continue the simulation. When that subscribee has received a
ProceedToSync call from all of its subscribers, it may actually proceed to the
next sync point.

The user of the co-simulation is provided with the following four methods:
RunSecondsSync(time), StartSync(), StepSync(), and StopSync(). A user can
call the RunSecondsSync method to simulate the co-simulation for the length of
time. When the RunSecondsSync method is called for one simulator, that simu-
lator calls ProceedToSync of its subscribees, which in turn call ProceedToSync
of their subscribees, and so on. Thus, the whole co-simulation cluster is started
with only one method call by the user. The three other methods, StartSync,
StepSync, and StopSync, are basically only variations of RunSecondsSync with
the following relations:

• StartSync() = RunSecondsSync(∞),

• StepSync() = RunSecondsSync(next syncPoint), and

• StopSync() = RunSecondsSync(0).

As said before, the synchronization is based on autonomously operating
simulator units. Each such unit is responsible for ensuring that its subscribed
items are received and that its subscribers have received their subscribed items
as well. The operation of a single simulator is presented in detail in the two
activity diagrams: The independently operating OPC UA server subscription
management thread is depicted in Figure 6.3. The synchronizer thread is depicted
in Figure 6.4. The two activity diagrams are explained in detail in the following.
All the method parameters have been omitted from the notation.

When the OPC UA server is used in the synchronized simulation, the sub-
scription management operates as follows: When the OPC UA server is started
and a new subscription is created, the initial values of the variables are published
and an event is sent to confirm that the publishes have been performed. When
the simulation is started, the thread stays on hold. When the simulation reaches
the first sync point it stops and notifies the subscription thread to publish the
values and the event. When the simulation is continued, the cycle is repeated.
All subscriptions of each subscriber operate similarly.

The synchronizer thread operates as follows. When the synchronizer is
started, it connects to all of its subscribees and creates the subscriptions. Af-

CHAPTER 6. IMPLEMENTATION 54

Publish subscribed values

Publish subscribed events

Wait

Running

Sync point reached

RunSeconds(syncInterval)

Figure 6.3: OPC UA server subscription thread activity diagram

ter that, it starts to receive InitSync() calls from other simulators. For each
InitSync(), the synchronizer adds the caller to its subscribers list.

After the initialization phase, the synchronizer waits for a start command
from either a user (RunSecondsSync()) or from another simulator (ProceedTo()).
If it has no subscribers, it can be started only by a user. After a start command,
the synchronizer goes into the loop where it tests whether it can advance the
simulation.

In the loop, the synchronizer first checks whether it has called ProceedTo()
of each of its subscribees to allow them to continue to the next sync point. If not,
it does so, assuming that the end time given by either the user or by another
simulation has not been reached. After it has made the ProceedTo() calls, it waits
that all of its subscribers in the subscriber list allow it to continue by calling its
ProceedTo(). After they have done so, the synchronizer can enter the final phase
of a co-simulation iteration.

In the final phase, the synchronizer writes the subscribed variable values to
the simulation. After that, it calls run(syncInterval) of the Adda interface to run
the simulation till the next sync point. The synchronizer waits for an event from
the simulation to signal it that the sync point has been reached. After that, the
synchronizer waits until it has received a subscription publish from every one of
its subscribees; when all subscribees have sent an event, the synchronizer knows
that all of the variables subscribed have been sent as well. In the meanwhile, the

CHAPTER 6. IMPLEMENTATION 55

Connect to all subscribees,
Call InitSync() of each subscribee

Initiate synchronization,
Add a subscriber

Have ProceedTo()’s
been sent?

Is there time left?

Send ProceedTo()’s
to all subscribers

Have I received
a ProceedTo() from each

subscriber?

Wait for ProceedTo()’s

Write subscribed
values to the simulator

Continue the simulation

Pause the simulation,
(Serve the subscribers)

InitSync()

InitSync()
RunSecondsSync()

ProceedTo() RunSecondsSync()

No

Yes

No

RunSecondsSync()

ProceedTo()

Yes

No

Yes

sync point reached

all subscriptions received

Figure 6.4: Synchronization mechanism activity diagram. The method parameters
are left out of the notation.

subscription thread is publishing subscriptions to the subscribers. When all
subscriptions have been received, the synchronizer can start the loop again.

CHAPTER 6. IMPLEMENTATION 56

Even though the simulators have seemingly similar hierarchies with each
other, there is always at least one so-called master simulation in a co-simulation
cluster. The master simulation is a simulation which is controlled by a user with
the RunSecondsSync method. Thus, the only difference between a master and a
regular simulation is that a master simulation is responsible for running the
whole co-simulation according to the user’s instructions, that is, to start and stop
the simulation when desired by the user. In many of the typical use cases, the
master simulation can be chosen arbitrarily. However, a simulation which cannot
excite the whole cluster by recursive ProceedToSync method calls cannot be
chosen as the sole master simulation. Moreover, certain co-simulation topologies
need multiple master simulators. As an example, the two simulators in Figure 6.5
that have no subscribers within the cluster must both be masters. This is because
the simulation in between them does not subscribe to either of them and thus
does not call ProceedToSync of either of the other two simulators.

M M

subscribe subscribe

Figure 6.5: The simulations marked with M are masters in the co-simulation cluster.

External OPC UA client applications can use the OPC UA servers of the
simulators between the sync points as well. However, the chosen implemen-
tation approach has its downsides on this connectivity: As said, the sampling
implementation is based on polling. Thus, if the simulation runs faster than the
sampling polls the simulator, the values within the OPC UA server cache are not
updated at every iteration and thus cannot be published to the clients.

6.3 Connection Configuration Management

In this section, the connection configuration manager is presented. Its function
is to store and utilize the connection configuration and provide the ability to
browse and modify it via OPC UA. First in this section, the address space model
of the connection configuration is introduced. Secondly, the methods in the
address space for modifying the configuration are viewed. Finally, the XML
schema developed to save the configuration is presented.

CHAPTER 6. IMPLEMENTATION 57

6.3.1 Address Space

The connection configuration is visible through the OPC UA interface as a part of
the address space. The structure of the address space model is strongly influenced
by the address space model of the classic OPC DX specification depicted in
Figure 6.6. The Status branches and other details of minor importance have not
been implemented. Otherwise, all that is presented in Figure 6.6 applies to the
implementation of this work.

Figure 6.6: The DX branch of the address space in a classic OPC DX server [49]

A sample address space is shown in Figure 6.7. In this figure, the DX object
is expanded recursively. Moreover, even when not shown in the figure, all of
the objects under the DX object have their respective TypeDefinition nodes
within the Types folder. The address space model of the connection configuration
manager is explained using Figure 6.7 as an example.

The DX object is placed on the same level with the Simulation object. Likewise
with OPC DX, the DXConnectionsRoot and SourceServers objects are placed under
the DX object. In addition, the Synchronization object is under the DX object as
well.

CHAPTER 6. IMPLEMENTATION 58

Figure 6.7: An example address space of the DX object

DXConnectionsRoot contains folders and DXConnection objects. A DXCon-
nection object is similar to the DXConnection item defined in the OPC DX
specification with only minor modifications: the DXConnection object is supple-
mented with the ItemID and namespace index of the source item as well as the

CHAPTER 6. IMPLEMENTATION 59

namespace index of the target item. These new parameters allow an item on a
source server to be accessed in two alternative ways: The conventional way is to
first browse the address space of the source server to acquire the ItemID of the
desired item. After that, the item can be read, written, and subscribed. The new
way is to use the ItemIDs provided by the connection configuration manager to
directly access the desired items without needing to first browse the address
space to find them. The latter way enables an easier start-up of the co-simulation
cluster. Only this approach is implemented in this work.

The SourceServers object contains all the source server objects. A source
server object is defined with two string variables: name and URL. A source server
is uniquely identified by the value of the name variable, and the value of the
URL variable is the endpoint URL of the source server.

The Synchronization object consists of the methods which are used by other
simulators and external OPC UA clients to control the simulation. In addition to
the methods, the synchronization object contains the TickLength variable which
denotes the length of the sync interval.

In addition to what was presented above, the address space contains methods
that allow the configuration to be modified via OPC UA. These methods are
discussed in the following subsection.

6.3.2 Configuring the Connection via OPC UA

Configuring the connection via the OPC UA interface is done with methods.
With these methods, a user can

• change the length of the sync interval,

• add, modify, and delete source servers, and

• add, modify, and delete DXConnections.

The methods implemented are based on OPC DX services. The whereabouts of
the methods within the OPC UA address space are shown in Figure 6.7. All the
methods with their arguments shown are presented in Appendix A.

The length of the sync interval can be modified with the SetTickLength
method. This method is placed under the Synchronization object.

A new source server can be added by using the Add method under the
SourceServers object. An existing source server can be modified with the Modify
method under that source server object. If an empty string is entered as a
parameter, it is interpreted that the parameter is not to be changed. A source
server which is not referenced by any DXConnection can be deleted with the
Delete method.

CHAPTER 6. IMPLEMENTATION 60

A new DXConnection can be created by using the Add method under the
DXConnectionsRoot object. The created DXConnection is added under the
specified path under DXConnectionsRoot. An existing DXConnection can be
modified with the Modify method under that DXConnection object. Again, if
an empty string is entered as a parameter, the parameter is not changed. A
DXConnection can be deleted with the Delete method.

The implementation of this work does not allow changing the connection
between the simulators in run-time. The methods described above alter only
the XML configuration file used to store the connection configuration. Thus, to
modify the connection, the co-simulation cluster must be restarted.

6.3.3 Storing the Configuration

The connection configuration is stored in an XML file. One configuration
file can be used to define all connections of a whole co-simulation cluster.
Alternatively, one configuration file for each simulator can be used to define only
the connections from that simulator, that is, the subscribees of the simulator and
the related DXConnections. The configuration file defines which server–server
connections exist and what source item–target item connections they include.

The format of the connection configuration is defined in the XML Schema
file presented in Appendix B. An example XML configuration file based on the
Schema is presented in Appendix C. All of the connections in the co-simulation
cluster are defined in that one file. In this example, all the critical definitions are
filled; the attributes and elements left blank are visible in the OPC UA server
address space but contain no functionality whatsoever. The contents of the
example XML file are explained in the following.

The first noteworthy element in the configuration file is the Tick element,
which denotes the sync interval. It has Length as a subelement. The Tick element
is common for all connections in a co-simulation cluster since the whole cluster
operates with a same sync interval.

The server–server connections are defined with the Connection elements.
A Connection element defines a subscriber–subscribee pair of simulators con-
nected together and the DXConnections of that connection. Furthermore, each
Connection has an Enabled element, which defines whether the Connection is
included in the parsing of the XML file.

The DXConnections are grouped based on their subscriber–subscribee pairs.
The DXConnection elements have the parameters and attributes given when
creating the DXConnection. As an exception, SourceServerName is not included
as an attribute of a DXConnection element since it is already evident form the
location of the DXConnection element in the XML file.

Chapter 7

Testing and Evaluation

In this chapter, the implementation presented in the previous chapter is evalu-
ated. In Section 7.1, the different tests are described in detail and their results are
presented and analyzed. In Section 7.2, the results are discussed and reflected
against the goals of the experimental part of this thesis.

7.1 Tests

Three different tests are conducted with the synchronization mechanism. The
tests help evaluate the feasibility of utilizing the co-simulation environment
implementation in real-world process simulation applications.

7.1.1 Basic Control Model Co-simulation

As stated earlier, Apros and OpenModelica excel at different areas. A likely use
case for co-using the two is to simulate a process with Apros while OpenModelica
is simulating a controller for that process. In the planning phase of this thesis, a
target was to evaluate the co-simulation environment with a real-world process
model of an industrial partner. Since this collaboration did not succeed, only a
very simple test case to evaluate the implementation was created in this thesis.

The purpose of the basic control model co-simulation test is to briefly evalu-
ate the synchronization mechanism: the aim is to examine the effects caused
by the division of a simulation model into two submodels which are run in
separate simulators. In particular, the target is to illustrate the influence of the
internal delays emerging in the co-simulation model due to the latencies in
communication between the simulators.

In this test, two similar simulations are run. The first simulation is run in
Apros only and the second one as a co-simulation of Apros and OpenModelica.
A sync interval of 200 ms is used in the co-simulation, the step length of both of

61

CHAPTER 7. TESTING AND EVALUATION 62

the simulations is also 200 ms. The simulation experiments are based on the
Apros model depicted in Figure 7.1.

Figure 7.1: A PI controller controls a valve.

In the model, a PI controller (proportional-integral controller) controls an
actuator which opens and closes a control valve. The valve is connected to two
pipes through which liquid flows due to the different pressures and elevations in
the endpoints of the pipes. The PI controller measures the flow in the upper
pipe and, based on the measurement, opens or closes the valve to make the flow
through the pipe equal the desired setpoint value. The input of the model is the
setpoint value of the PI controller and the output is the actual flow through the
upper pipe.

In this test, two experiments are run. In the first experiment, the Apros model
above is run as such. In the other experiment, the PI controller block is replaced
by an OpenModelica equivalent (Modelica.Blocks.Continuous.LimPID). The
OpenModelica PI controller is tuned similarly to the PI controller in Apros. In
both of the tests, the system is excited with the same step input

SP =
{

0 , when t < 5s
5 , when t ≥ 5s

,

CHAPTER 7. TESTING AND EVALUATION 63

where SP is the setpoint of the PI controller and t the simulation time. The
outputs are plotted to analyze how the division of the model between the two
simulators affects the response of the simulation in the chosen co-simulation
environment design.

The output of the Apros simulation is depicted in Figure 7.2, as well as the
input signal. The PI controller is tuned to follow the input relatively fast. Thus,
as can be seen, the output follows the input rapidly with a 15 % overshoot and
oscillates only slightly.

Figure 7.2: The step response of the simulation with the whole model simulated in
Apros

The output of the co-simulation is presented in Figure 7.3, as well as the
input signal. Even when a similarly tuned PI controller is used, the output differs
drastically from the first simulation: the output starts to rise later, overshoots,
and oscillates a considerably greater amount.

As stated in Section 2.3, dividing the model into submodels may cause error
in the outcome of the simulation. The different behavior of the two simulations
is mostly due to this error. When the setpoint is changed in Apros, it needs to be
transmitted to OpenModelica as the input of the PI controller. The output of the
PI controller is computed in OpenModelica, after which the output is mediated
to Apros. The same applies with the measurement signal for the controller.

CHAPTER 7. TESTING AND EVALUATION 64

Figure 7.3: The step response of the simulation with the process simulated in Apros
and the PI controller in OpenModelica

Hence, it takes two sync intervals prior to either of the PI controller inputs in
Apros can affect the PI controller output in Apros. Since the sync interval of the
co-simulation is 200 ms, an additional delay of 400 ms emerges. This causes the
controller to react more slowly to given inputs which leads to the differences
described before: The dead time prior to the rise of the output is increased
by the 400 ms. The overshoot is more severe since the controller receives the
information of reaching the setpoint only after the output has already 400 ms
ago passed the setpoint. The oscillation has a similar cause as well.

The result of this test raises the question of how to prevent or decrease the
error generated. A straightforward solution for decreasing the error is to shorten
the sync interval or to use a slower tuning in the controller. Since the error
related issues do not belong to the scope of this thesis, this issue is not studied
further.

7.1.2 Scalability

The purpose of the scalability test is to determine how the performance of the
co-simulation environment is affected when increasing the amount of items in

CHAPTER 7. TESTING AND EVALUATION 65

communication between the multiple simulators; the processing time needed for
the synchronization is measured in these tests. The target is to determine the
amount of data that can be exchanged between the simulators in a cluster and
how short sync intervals can be used. The test setup is based on the requirements
of real-time process simulation, yet the results can be applied to other types of
simulation as well.

It must be stressed that the sample sizes used in the tests are too small to
accurately estimate the performance of the system. However, since the test
environment has quite a many unknown factors as well, an accurate analysis
would be difficult even with more thorough testing. In addition, since the target
of the tests is to give only a rough estimate of the capabilities of the system, the
small sample sizes can be justified.

In process simulation, it is typically sufficient to use a step length of 200 ms.
In some rare occasions, 50 ms step length may be needed. On the other hand, for
some processes even a step length of one minute may be sufficient. [44] Thereby,
these tests examine the behavior of the co-simulation environment with the sync
intervals of 50, 200, and 1000 ms. For consistency, however, the step length of 50
ms is used for all individual simulators.

Even when a process simulation model may consist of even millions of
variables, a common use case is that not all of them need to be monitored by
external applications [44]. The tests in this subsection examine the behavior
of the co-simulation environment with up to 3000 variables per simulation in
communication; thus, a co-simulation with 3000 items per simulation has a total
of 6000 items in communication. The maximum value 3000 was chosen since
larger models would have required an unreasonably long compilation time in
OpenModelica. To gain a better understanding about the scalability, tests with
fewer variables in communication are run as well: the test is executed also with
1, 10, 100, 300, and 1000 items per simulation in communication.

In each of the scalability tests, two identical simulation models are combined
to create the co-simulation model. Both of the models consist of a number
of signal generators (sine waves) and an equal amount of constant variables. In
the co-simulation model, each signal generator is connected to the respective
constant in the other simulation: the signal generators are source items and the
constant variables target items. The test is executed for all combinations of the
sync interval and the number of variables. Five experiments are run for each
pair.

All of the tests are run with OpenModelica simulations only. The Modelica
code of the OpenModelica simulations in the test with only one signal generator
per simulation is presented in the following:

CHAPTER 7. TESTING AND EVALUATION 66

model Signal_gen

Modelica.Blocks.Sources.Constant constant1(k = 10);

Modelica.Blocks.Sources.Sine sine1(amplitude = 1,

freqHz = 3.1415, phase = 1, offset = 0, startTime = 0);

end Signal_gen;

The simulation models with multiple signal generators are created by duplicating
the Constant and Sine blocks.

An example co-simulation configuration is shown in Figure 7.4. In this
co-simulation, both of the simulators have one signal generator and one constant
block and thus the total amount of two connections exist in the model. In the
initialization phase, both simulators subscribe the output of the signal generator
in the other simulator. At each sync point, the values of the signal generators are
published and written to the constant block in the other simulation. The values
are not utilized further.

Figure 7.4: The first scalability test consists of two identical OpenModelica simula-
tions. The outputs of the sine signal generators are written into the other simulation.

The timing of the co-simulation is started at the point in which the OPC
UA server sends a start command to the simulator. The endpoint is the point
where the OPC UA receives the event with the time stamp of 10 seconds from
the simulator. The slightly biased timing is justifiable since the error produced
with the selected measurement points is negligible. The timing is performed by
using the QueryPerformanceCounter [78] function.

Prior to testing the co-simulation environment, all of the individual sim-
ulation models are run with the synchronization disabled to be able to later

CHAPTER 7. TESTING AND EVALUATION 67

calculate the overhead of the synchronization. The simulation computing times
for the different amounts of signal generators are presented in Table 7.1. The
results appeared to be very consistent on repeated trials and thus only one
timing was performed per simulation. The results are presented in milliseconds.

Table 7.1: Simulation time without synchronization

Number of sig-
nal generators

Elapsed real time (ms)

1 5
10 5
100 5
300 12
1000 40
3000 116

The co-simulation test results are presented in Table 7.2. The five columns
represent the five experiments for each simulation. The results are presented in
milliseconds.

The overhead caused by the synchronization can be calculated based on
the measurements presented in Tables 7.1 and 7.2. The target is to study the
feasibility of utilizing the synchronization in real-time co-simulation. Thus,
the interest is on the percentage of the computation time that needs to be
reserved for the synchronization. The overhead is calculated for each connection
configuration studied above, that is, for each combination of a sync interval and
a number of signal generators.

The overhead percentage of the synchronization is calculated from the
measurements using the formula

OH =
1

10s

(1
n

n∑
i=1

tc,i − t0
)
· 100%,

where OH is the overhead time in percentages, n the number of experiments, tc,i
the co-simulation total time of the ith experiment, and t0 the simulation total
time without OPC UA connections. The overhead percentage formula has been
constructed as follows.

First, the mean computation time of the five experiments is calculated by
summing the computation times of the individual experiments and dividing the
sum by the amount of experiments. The experiments with anomalous results

CHAPTER 7. TESTING AND EVALUATION 68

Table 7.2: The synchronization time of co-simulations lasting 10 seconds. The asterisk
(*) denotes a nonuniform result.

Sync inter-
val

Number of sig-
nal generators

Elapsed real times (ms)

50 ms

1 790 789 789 789 790
10 789 789 789 789 790
100 785 784 788 785 789
300 1171 1177 1153 1216 1181
1000 2173 2321 2191 2160 2143
3000 11672 11657 11552 11927 11514

200 ms

1 204 203 203 202 204
10 203 202 203 203 203
100 198 200 200 200 198
300 297 305 301 295 299
1000 808* 563 585 561 578
3000 3321 3348 3312 5186* 3109

1000 ms

1 48 47 47 48 51
10 47 49 46 47 49
100 46 46 44 46 45
300 72 71 70 70 70
1000 150 155 166 149 167
3000 843 865 793 733 924

(marked with asterisks) have been left out of the calculation. The phenomenon
visible in those two experiments is further studied later.

Subsequent to the mean value calculation, the computation time needed by
the two simulations without synchronization or data exchange is subtracted
from the mean value. When the co-simulations were run in the test environment,
the processors were fully utilized, whereas when running only one simulation,
the utilization degree of the processors was only 50%. Thus, it can be estimated
that the total computation time needed for the execution of the two individual
simulations in a co-simulation is not 2·t0 but instead only t0 since the simulations
can execute parallelly in the co-simulation.

Finally, the synchronization and data exchange overhead is converted from
seconds to percentages. All the co-simulations are run for 10 seconds in sim-
ulation time. Thus, if a co-simulation is simulated at the same pace with the

CHAPTER 7. TESTING AND EVALUATION 69

real time, the overhead time needs to be divided by 10 seconds to calculate the
proportion of the computation time which is needed for the synchronization and
data exchange. Furthermore, this proportion is converted to percentages.

The calculated overheads are presented in Table 7.3. The percentages show
the amount of computing time that would be needed for the synchronization
and data exchange of the co-simulation if it was run in real-time. It should be
emphasized that the percentages shown in Table 7.3 are highly dependent on
the hardware used and the result must be interpreted accordingly.

Table 7.3: The synchronization overhead in real-time co-simulation in percentages

Number of sig-
nal generators

Sync interval (ms)

50 200 1000

1 8% 2% < 1%
10 8% 2% < 1%
100 8% 2% < 1%
300 12% 3% < 1%
1000 22% 5% 1%
3000 115% 32% 7%

Based on the results of Table 7.3, it seems that the overhead of the synchro-
nization grows approximately at the rate of O(n), at least up to a 1000 items.
With 3000 items, however, the overhead is about six times as high as in the case
with a 1000 items. Thus, the result of the test indicates that the co-simulation
environment is scalable at least up to a 1000 items in communication. More
than a 1000 items can be used but they may need more efficient hardware. It is
also unknown whether the scalability issues with more than a 1000 items are
due to a lack of performance in hardware, software, or both. It also seems that
the overhead does not change notably when there are a 100 or fewer items in
communication.

As could have been anticipated, the overhead is inversely proportional to the
length of the sync interval. Thus, the synchronization overhead can be decreased
easily by extending the sync interval. In addition, using hardware with more
computational power may allow using a higher number of items or a shorter
sync interval.

The actual simulation needs computation time as well. With sync intervals
of 1000 ms and longer, the synchronization overhead is almost negligible if
a 1000 or less items are in communication. Thus, even a fairly high number

CHAPTER 7. TESTING AND EVALUATION 70

of items can be used. With the commonly used sync interval of 200 ms, the
synchronization takes 2 – 5 % of the computation time, up to a 1000 items
in communication. With 3000 items in communication, the synchronization
needs a third of the computation which may be unacceptable for systems with
real-time constraints. A sync interval of 50 ms with over a 100 items can be used
although with that sync interval the synchronization takes at least 8 % of the real
time available. Higher numbers of items require larger amounts of computation
time. A connection with 3000 items per simulation cannot be done at all since
the computation needed is 115 % of the total computation time available.

The first question that arises from the results of the abovementioned test
is whether the overhead time is deterministic, that is, whether the overhead
in each sync interval is sufficiently close to the mean overhead value. Since all
of the tests made in this thesis are very much hardware dependent and thus
an accurate mathematical analysis would not apply generally, only a simple
test is executed: Two of the aforementioned simulations are run again and their
individual sync intervals are measured. First, the co-simulation with a 1000
signal generators within each simulator is run with a 50 ms sync interval. Second,
the co-simulation with 3000 signal generators within each simulator is run with
a 200 ms sync interval. The simulations are repeated five times.

Tables 7.4 and 7.5 show the outcome of the test. The number of sync intervals
taking exceptionally long to compute is marked on the two tables. In the first
test, sync intervals taking longer than 20, 35, and 50 ms are counted, and in the
second test, sync intervals taking longer than 100, 150, and 200 ms are counted.

Table 7.4: The longest sync intervals with a 1000 items in communication

Boundary (ms) Number of exceedings

50 – – – – –
35 – – – – –
20 – – – 2 –

In the first test, the boundary of 20 ms is exceeded in only one of the five
experiments. In addition, the exceedings were both under 21 milliseconds. The
mean value of 22 % is equivalent to a 10 ms overhead so the largest overhead
was 100 % longer than the mean overhead. In the second test, the boundary of
100 ms is exceeded in all five experiments with the one exceeding in the second
experiment being slightly over 150 ms. The mean value of 32 % is equivalent to
a 64 ms overhead so the largest overhead was over 130 % longer than the mean
overhead. Hence, it can be said that the overhead is sufficiently deterministic.

CHAPTER 7. TESTING AND EVALUATION 71

Table 7.5: The longest sync intervals with 3000 items in communication

Boundary (ms) Number of exceedings

200 – – – – –
150 – 1 – – –
100 2 1 2 2 3

The mean overhead test raised a question regarding the anomaly found in
the results: the two measurements marked with an asterisk took 40 % more
computation time than the other ones. This effect is occasionally present when a
simulation is run for the first time. In addition, this effect is found in situations
when the test computer is otherwise utilized between the initialization and the
starting of the synchronous simulation. Regardless of any varying parameters
of the synchronization, this delay seems to be around 40 %. To measure where
the additional delay occurs, a 40.0 seconds 1000 signal generator experiment
was run, with and without interference. The elapsed time was measured in
four points in simulation: after 10, 20, 30, and 40 seconds. The results of this
experiment are shown in Table 7.6. This experiment shows that the additional
delay is linearly dependent on the total simulation time, instead of, for instance,
being a long delay in the beginning of the simulation. The phenomenon is not
studied further and thus its origin is left unknown.

Table 7.6: Elapsed real time with and without interference

Simulation time (s)
10.0 20.0 30.0 40.0

Without interference 568 ms 1159 ms 1746 ms 2367 ms
With interference 818 ms 1604 ms 2400 ms 3210 ms

A study of two interconnected Apros simulations has been conducted by
Peltoniemi, Karhela, and Paljakka [79] in 2001. In this study, the classic OPC
was used as the communication method between the two simulators, and an
external cross connector application was used. Even though the test methods are
not identical, some comparison can be made: In the study by Peltoniemi et al.,
the achieved maximum performance was 11000 items with the sync interval
of 200 ms in real time. In contrast, in this thesis 3000 items were exchanged
by both of the simulators with the sync interval of 200 ms which needed 3157

CHAPTER 7. TESTING AND EVALUATION 72

ms of computing time for 10 seconds of simulation time. Thus, in the study by
Peltoniemi et al., the transfer rate was 11,000 · 5s−1 = 55,000s−1, whereas in this
study the rate was 2 · 3,000 · 5s−1 · 10s · (3.157s)−1 ≈ 95,000s−1.

The hardware used in this study was approximately 5 times as efficient as in
the study by Peltoniemi et al. Hence, it can be argued that the performance in
the implementation of Peltoniemi et al. is about three times as high as in this
thesis. With larger amounts of mediated data, the overhead caused by OPC UA
becomes dominant to the overhead of the rest of the synchronization mechanism.
Hence, this result is also moderately well in line with other studies made about
the performance differences between the classic OPC and OPC UA. However,
with the great amount of varying factors between these two studies, this may as
well be coincidental.

7.1.3 Different Topologies

To prove that the implementation can be used with an arbitrary topology of
simulators in a cluster is a fairly difficult task; a co-simulation of only three
simulators has 13 possible topologies [80], even if no difference is made on what
the individual simulators are. Therefore, in this thesis only a set of selected
topologies are tested to validate the design. In addition to the design, the tests
will also validate the implementation; any severe bugs are found as well. The
topologies that are tested are shown in Figure 7.5.

O

A

(a)

O A

(b)

O

O O

(c)

O

O O

(d)

O A O

(e)

O

O O

(f)

O

O

A

(g)

Figure 7.5: The tested co-simulation topologies

CHAPTER 7. TESTING AND EVALUATION 73

In Figure 7.5, A denotes an Apros simulation and O an OpenModelica
simulation. All topologies with an Apros simulation have also been tested with
the Apros simulation replaced by an OpenModelica simulation. The arrows
denote to subscriptions: the start point of the arrow is the subscriber and the
end point the subscribee. As a result, when the synchronization mechanism was
tested with the topologies above, the simulations had no topology related problems.

7.2 Discussion

In this section, a summary of the test results is given with discussion on their
meaning. Additionally, viewpoints left with less attention are brought up and
inferences are drawn beyond the scope of the thesis.

The co-simulation environment is scalable and thus suitable for medium-sized
co-simulations with a fairly high number of interchanged items in communication.
It is also plausible that using hardware with more computational power will
move the point where the scalability issues start to emerge even farther. Since the
synchronization overhead time is relatively deterministic, at least with a small
test data, the implementation satisfies the soft real-time constraint. Additionally,
the design of the synchronization mechanism has been proven to work with both
cyclic and acyclic co-simulation cluster topologies, at least the most typical ones.

Even when not accurately measured, the performance of the plain OPC
UA server is at least slightly higher than with the synchronization enabled.
The achieved transfer rate of 95,000 items per second with 3000 items in
communication per simulator can be seen sufficient for many use cases. The
implementation starts to suffer from scalability issues when the amount of
subscribed items is increased from a 1000 to 3000, at least with the hardware
used in this work. Even so, the server still operates fairly well with 3000 items in
communication.

Since the inter-process communication within the co-simulation environment
is solely based on OPC UA, the different simulations may as well be run on dis-
tributed computers. The distribution will have its influence on the performance
of the communication but the exact amount is unknown. On the other hand,
the distribution will decrease the actual simulation times. Additionally, the
major portion of the overhead of the synchronization mechanism is due to the
bottleneck simulation of the cluster; the execution of each simulation is bounded
by the executing speed of the slowest simulation. During this idle time, however,
the simulations which have reached the sync point can accomplish practically all
the data exchange needed between them as well as publish the values subscribed
by the bottleneck simulator.

CHAPTER 7. TESTING AND EVALUATION 74

As stated before, if a controller is simulated within the other simulator than
the process it controls, a delay of two sync intervals at minimum emerges to the
output of the controller. The error generated can be managed in the modeling
phase by using only a small number of connections between the simulations
and mediating only such variables that do not change rapidly. The issue can be
managed also by shortening the sync interval or using a less aggressive tuning
in the controller. Another approach would be to apply more advanced control
schemes. A Smith predictor, for instance, is a controller developed to control
systems with a pure delay.

Chapter 8

Conclusions

Current technical systems are constantly growing larger and becoming more
complex. Multiple simulation tools are thus commonly needed to model the
behavior of such systems. With synchronized co-simulation, different simulation
tools can be interconnected almost seamlessly to model and simulate large multi-
domain systems. Co-simulation can yield enhanced computational efficiency,
more accurate results, and improved flexibility in modeling.

OPC UA is a forward-looking communication interface which has great po-
tential of becoming the next long-lasting communication standard in industrial
automation. The versatility of OPC UA allows it to be used in a wide variety of
applications; it can even integrate a whole information network of a factory. At
the moment, though, the user base of OPC UA is still marginal in comparison
with the classic OPC.

Selecting OPC UA as the communication method for the co-simulation
environment developed in this work has proven mostly advantageous. The com-
munication was measured to be adequately efficient, scalable, and deterministic
for medium-sized co-simulations with soft real-time constraints. The evaluation
also validated that OPC UA is generally suitable for synchronized horizontal
communication. In addition to the internal communication of the co-simulation
environment, OPC UA provides the whole co-simulation and the individual
simulators with external I/O interfaces. Furthermore, the modularity of the
design allows embedding the same implementation in other simulators to enable
the co-simulation features for them as well.

A synchronization technique based on autonomously operating simulators
was proposed in this thesis. The major strength of the technique is a high transfer
rate with large amounts of data in communication. The main shortcoming is that
additional latencies emerge in the co-simulation model. The synchronization

75

CHAPTER 8. CONCLUSIONS 76

mechanism can be used also in co-simulations with more than two simulators
and with cyclic dependencies.

The development of both the co-simulation environment and the plain OPC
UA server can be continued in numerous ways. The most important of these
activities are to migrate the implementation to Apros 6, improve the usability,
and to validate the correct operation of the co-simulation environment within
a real-world application. Regarding the data exchange mechanism, there is
currently some interest in the OPC Foundation to develop a standard definition
for horizontal data exchange in OPC UA. As a contribution to that aim, the
design used in this thesis has been presented to the OPC Foundation. If a DX-like
functionality similar to the one presented in this thesis is later included in the
OPC UA specification, the implementation of this work can easily be modified to
follow that specification.

Bibliography

[1] Law, A. M. Simulation Modeling and Analysis. McGraw-Hill, 4th edition,
2007. ISBN 978-007-125519-6.

[2] Braunschweig, B. and Gani, R. Software architectures and tools for
computer aided process engineering. Elsevier, 2002. Available at: http://
www.google.com/books?id=GVzsJ_a1m0EC [Referenced on 2012-01-16]. ISBN
9780444508270.

[3] Misra, J . Distributed discrete-event simulation. ACM Comput. Surv., 18
(1):39—65, March 1986. DOI: 10.1145/6462.6485. Available at: http://
portal.acm.org/citation.cfm?id=6485 [Referenced on 2012-01-16]. ISSN
0360-0300. ACM ID: 6485.

[4] Ayani, R. Parallel simulation. In Donatiello, L. and Nelson, R.,
editors, Performance Evaluation of Computer and Communication Systems,
volume 729, S. 1–20. Springer-Verlag, Berlin/Heidelberg, 1993. Available
at: http://www.springerlink.com/content/m0w5116662788958/ [Referenced
on 2012-01-16]. ISBN 3-540-57297-X.

[5] MathWorks Nordic MATLAB - the language of technical computing.
2011. Available at: http://www.mathworks.se/products/matlab/index.html
[Referenced on 2012-01-16].

[6] Ventana Systems Inc. Vensim. 2011. Available at: http://www.vensim.
com/ [Referenced on 2012-01-16].

[7] National Instruments LabVIEW - the software that powers virtual
instrumentation - national instruments. 2011. Available at: http://sine.
ni.com/labview/ [Referenced on 2011-09-30].

[8] Miller, D. C. and Thorpe, J . A. SIMNET: the advent of simulator
networking. Proceedings of the IEEE, 83(8):1114–1123, August 1995. DOI:
10.1109/5.400452. Available at: http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=400452 [Referenced on 2012-01-16]. ISSN 0018-9219.

77

http://www.google.com/books?id=GVzsJ_a1m0EC
http://www.google.com/books?id=GVzsJ_a1m0EC
http://portal.acm.org/citation.cfm?id=6485
http://portal.acm.org/citation.cfm?id=6485
http://www.springerlink.com/content/m0w5116662788958/
http://www.mathworks.se/products/matlab/index.html
http://www.vensim.com/
http://www.vensim.com/
http://sine.ni.com/labview/
http://sine.ni.com/labview/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=400452
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=400452

BIBLIOGRAPHY 78

[9] Wainer, G. A., Liu, Q., and Jafer, S. Parallel simulation of DEVS and
Cell-DEVS models in PCD++. In Discrete Event Simulation and Modeling:
Theory and Applications. CRC, 2011. ISBN 978-1-4200-7233-4.

[10] Wünsche, S. , Clauß, C., Schwarz, P. , and Winkler, F. Electro-
thermal circuit simulation using simulator coupling. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 5(3):277–282, September
1997. DOI: 10.1109/92.609870. Available at: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=609870 [Referenced on 2012-01-16]. ISSN
1063-8210.

[11] Jefferson, D. R. Virtual time. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 7(3):404—425, 1985. DOI:
10.1145/3916.3988. Available at: http://portal.acm.org/citation.cfm?
id=3988 [Referenced on 2012-01-16].

[12] Krzhizhanovskaya, V. V., Zatevakhin, M. A., Ignatiev, A. A.,

Gorbachev, Y. E. , and Sloot, P. M. A. Distributed simulation
of Silicon-Based film growth. In Wyrzykowski, R. , Dongarra, J . ,

Paprzycki, M., and Wasniewski, J ., editors, Parallel Processing and
Applied Mathematics, volume 2328, S. 879–887. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2006. Available at: http://www.springerlink.com/
content/erj5rtybb3030pe6/ [Referenced on 2012-01-16]. ISBN 978-3-540-
43792-5.

[13] Brailsford, S. , Katsaliaki , K. , Mustafee, N., and Taylor, S.

J . E. Modelling very large complex systems using distributed simulation:
a pilot study in a healthcare setting. Operational Research Society, 2006.
Available at: http://bura.brunel.ac.uk/handle/2438/4002 [Referenced on
2012-01-16].

[14] Santos, R. A., Normey-Rico, J . E. , Gomez, A. M., Arconada, L.

F. A. , and Moraga, C. d. P. Distributed continuous process simulation:
An industrial case study. Computers & Chemical Engineering, 32(6):1195–
1205, June 2008. DOI: 16/j.compchemeng.2007.04.022. Available at: http:
//www.sciencedirect.com/science/article/pii/S0098135407001135 [Refer-
enced on 2012-01-16]. ISSN 0098-1354.

[15] Nicol, D. M. and Liu, J . Composite synchronization in par-
allel discrete-event simulation. IEEE Transactions on Parallel and
Distributed Systems, 13(5):433–446, May 2002. DOI: 10.1109/T-
PDS.2002.1003854. Available at: http://www.computer.org/portal/web/

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=609870
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=609870
http://portal.acm.org/citation.cfm?id=3988
http://portal.acm.org/citation.cfm?id=3988
http://www.springerlink.com/content/erj5rtybb3030pe6/
http://www.springerlink.com/content/erj5rtybb3030pe6/
http://bura.brunel.ac.uk/handle/2438/4002
http://www.sciencedirect.com/science/article/pii/S0098135407001135
http://www.sciencedirect.com/science/article/pii/S0098135407001135
http://www.computer.org/portal/web/csdl/doi/10.1109/TPDS.2002.1003854

BIBLIOGRAPHY 79

csdl/doi/10.1109/TPDS.2002.1003854 [Referenced on 2012-01-16]. ISSN
1045-9219.

[16] Garcia-Osorio, V. and Ydstie, B. E. Distributed, asynchronous and
hybrid simulation of process networks using recording controllers. Interna-
tional Journal of Robust and Nonlinear Control, 14(2):227–248, January 2004.
DOI: 10.1002/rnc.871. Available at: http://onlinelibrary.wiley.com/doi/
10.1002/rnc.871/abstract [Referenced on 2012-01-16]. ISSN 1099-1239.

[17] Abdel-Jabbar, N., Carnahan, B. , and Kravaris, C. A multirate
parallel-modular algorithm for dynamic process simulation using dis-
tributed memory multicomputers. Computers & Chemical Engineering, 23(6):
733–761, June 1999. DOI: 16/S0098-1354(99)00002-2. Available at: http:
//www.sciencedirect.com/science/article/pii/S0098135499000022 [Refer-
enced on 2012-01-16]. ISSN 0098-1354.

[18] Modelica. Modelica association. July 2011. Available at: https://www.
modelica.org/association [Referenced on 2012-01-16].

[19] Fritzson, P. A. Principles of Object-Oriented Modeling and Simulation
with Modelica. J. Wiley, 2004.

[20] Fritzson, P. and Engelson, V. Modelica – a unified object-oriented
language for system modeling and simulation. In Jul, E., editor, ECOOP’98
– Object-Oriented Programming, volume 1445, S. 67–90. Springer-Verlag,
Berlin/Heidelberg, 1998. Available at: http://www.springerlink.com/

content/2h82h371600781t4/ [Referenced on 2012-01-16]. ISBN 3-540-
64737-6.

[21] Fritzson, P. , Pop, A., Sj ölund, M., Östlund, P. , and Aronsson,

P. OpenModelica users Guide,Version 2011-06-13 for OpenModelica
1.7. Technical report, Open Source Modelica Consortium, June 2011.
Available at: https://openmodelica.ida.liu.se/svn/OpenModelica/trunk/
doc/OpenModelicaUsersGuide.pdf [Referenced on 2012-01-16].

[22] MapleSoft. Who is using MapleSim? – high performance Multi-Domain
modeling and simulation. 2011. Available at: http://www.maplesoft.com/
products/maplesim/adopting.aspx [Referenced on 2012-01-16].

[23] Modelon. Modelon - dymola customer references. 2011. Available at:
http://www.modelon.com/products/dymola/dymola-customer-references

[Referenced on 2011-07-08].

http://www.computer.org/portal/web/csdl/doi/10.1109/TPDS.2002.1003854
http://www.computer.org/portal/web/csdl/doi/10.1109/TPDS.2002.1003854
http://onlinelibrary.wiley.com/doi/10.1002/rnc.871/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rnc.871/abstract
http://www.sciencedirect.com/science/article/pii/S0098135499000022
http://www.sciencedirect.com/science/article/pii/S0098135499000022
https://www.modelica.org/association
https://www.modelica.org/association
http://www.springerlink.com/content/2h82h371600781t4/
http://www.springerlink.com/content/2h82h371600781t4/
https://openmodelica.ida.liu.se/svn/OpenModelica/trunk/doc/OpenModelicaUsersGuide.pdf
https://openmodelica.ida.liu.se/svn/OpenModelica/trunk/doc/OpenModelicaUsersGuide.pdf
http://www.maplesoft.com/products/maplesim/adopting.aspx
http://www.maplesoft.com/products/maplesim/adopting.aspx
http://www.modelon.com/products/dymola/dymola-customer-references

BIBLIOGRAPHY 80

[24] MathCore. MathCore references. 2011. Available at: http://www.

mathcore.com/references/index.php#lifescience [Referenced on 2012-01-
16].

[25] ITI. ITI - supporting your visions!: Industries. 2011. Available at: http:
//www.itisim.com/simulationx/industries.html [Referenced on 2012-01-
16].

[26] OpenModelica. Welcome to OpenModelica. 2011. Available at: http:
//openmodelica.org/ [Referenced on 2012-01-16].

[27] OpenModelica. Open source modelica consortium. 2011. Available at:
http://www.openmodelica.org/index.php/home/consortium [Referenced on
2012-01-16].

[28] Simantics. Simantics platform – simantics. 2011. Available at: https://
www.simantics.org/simantics/about-simantics/simantics-platform [Ref-
erenced on 2012-01-16].

[29] Fritzson, P. 1st annual OpenModelica workshop feb 2, 2009.
Available at: http://www.ida.liu.se/˜petfr/OpenModelica2009talks/

090202-OMCWorkshop-PeterFritzson-OpenModelicaWorkshopOpening.pdf

[Referenced on 2012-01-16].

[30] Fritzson, P. 2nd annual OpenModelica workshop feb 8, 2010.
Available at: http://www.ida.liu.se/˜petfr/OpenModelica2010talks/

100208-Talk1-Peter-Fritzson-OpenModelicaWorkshopOpening.pdf [Refer-
enced on 2012-01-16].

[31] Fritzson, P. 3rd annual OpenModelica Work-
shop Feb 7, 2011. Available at: http://www.

openmodelica.org/images/docs/OpenModelica2011-PPt-slides/

OpenModelica2011-talk1-Peter-FritzsonOpenModelica-Workshop-Opening.

pdf [Referenced on 2012-01-16].

[32] Fritzson, P. , Pop, A., Sj ölund, M., Östlund, P. , and Aronsson,

P. OpenModelica system documentation, version 2011-06-13 for Open-
Modelica 1.7. Technical report, Open Source Modelica Consortium, June
2011. Available at: https://openmodelica.ida.liu.se/svn/OpenModelica/
trunk/doc/OpenModelicaSystem.pdf [Referenced on 2012-01-16].

[33] Kunze, J . F. and Jankov, K. Using modelica for interactive simulations
of technical systems in a virtual reality environment. Proceedings

http://www.mathcore.com/references/index.php#lifescience
http://www.mathcore.com/references/index.php#lifescience
http://www.itisim.com/simulationx/industries.html
http://www.itisim.com/simulationx/industries.html
http://openmodelica.org/
http://openmodelica.org/
http://www.openmodelica.org/index.php/home/consortium
https://www.simantics.org/simantics/about-simantics/simantics-platform
https://www.simantics.org/simantics/about-simantics/simantics-platform
http://www.ida.liu.se/~petfr/OpenModelica2009talks/090202-OMCWorkshop-PeterFritzson-OpenModelicaWorkshopOpening.pdf
http://www.ida.liu.se/~petfr/OpenModelica2009talks/090202-OMCWorkshop-PeterFritzson-OpenModelicaWorkshopOpening.pdf
http://www.ida.liu.se/~petfr/OpenModelica2010talks/100208-Talk1-Peter-Fritzson-OpenModelicaWorkshopOpening.pdf
http://www.ida.liu.se/~petfr/OpenModelica2010talks/100208-Talk1-Peter-Fritzson-OpenModelicaWorkshopOpening.pdf
http://www.openmodelica.org/images/docs/OpenModelica2011-PPt-slides/OpenModelica2011-talk1-Peter-FritzsonOpenModelica-Workshop-Opening.pdf
http://www.openmodelica.org/images/docs/OpenModelica2011-PPt-slides/OpenModelica2011-talk1-Peter-FritzsonOpenModelica-Workshop-Opening.pdf
http://www.openmodelica.org/images/docs/OpenModelica2011-PPt-slides/OpenModelica2011-talk1-Peter-FritzsonOpenModelica-Workshop-Opening.pdf
http://www.openmodelica.org/images/docs/OpenModelica2011-PPt-slides/OpenModelica2011-talk1-Peter-FritzsonOpenModelica-Workshop-Opening.pdf
https://openmodelica.ida.liu.se/svn/OpenModelica/trunk/doc/OpenModelicaSystem.pdf
https://openmodelica.ida.liu.se/svn/OpenModelica/trunk/doc/OpenModelicaSystem.pdf

BIBLIOGRAPHY 81

7th Modelica Conference, Como, Italy, Sep. 20-22, 2009, 2009. DOI:
10.3384/ecp09430080. Available at: https://www.modelica.org/events/
modelica2009/Proceedings/memorystick/pages/papers/0080/0080.pdf

[Referenced on 2012-01-16].

[34] Sandrock, C., de Vaal, P. L. , Jezowski, J . , and Thullie, J . Dy-
namic simulation of chemical engineering systems using OpenModelica and
CAPE-OPEN. In 19th European Symposium on Computer Aided Process Engi-
neering, volume Volume 26, S. 859–864. Elsevier, 2009. Available at: http:
//www.sciencedirect.com/science/article/pii/S1570794609701439 [Refer-
enced on 2012-01-16]. ISBN 1570-7946.

[35] Proß, S. , Bachmann, B. , and Stadtholz, A. A petri net
library for modeling hybrid systems in OpenModelica. In sub-
mitted (Modelica Conference 2009). Linköping University Electronic
Press, Linköpings universitet, 2009. DOI: 10.3384/ecp09430014.
Available at: https://modelica.org/events/modelica2009/Proceedings/

memorystick/pages/papers/0014/0014.pdf [Referenced on 2012-01-16].
ISBN 978-91-7393-513-5.

[36] Link, K., Vogel, S. , and Mynttinen, I . Fluid simulation
and optimization using open source tools, 2011. Available at:
https://www.modelica.org/events/modelica2011/Proceedings/pages/

papers/18_2_ID_180_a_fv.pdf [Referenced on 2012-01-16].

[37] Lenord, O. OpenModelica in mechatronic applications at
Bosch Rexroth, 2009. Available at: http://www.ida.liu.se/˜petfr/

OpenModelica2009talks/090202-OSMCWorkshop_OliverLenord-OM4BR_

public.pdf [Referenced on 2012-01-16].

[38] MathCore MathModelica Lite Download, 2012. Available at: http://
www.mathcore.com/products/mathmodelica/downloadlite.php [Referenced
on 2012-01-23].

[39] Apros. Apros - process simulation software - in brief. 2011. Available at:
http://www.apros.fi/en/apros_in_brief_2 [Referenced on 2012-01-16].

[40] Apros. Apros - conventional power plant references. 2011. Avail-
able at: http://www.apros.fi/en/references/conventional_power_plant_

references [Referenced on 2012-01-16].

[41] Apros. Apros - nuclear references. 2011. Available at: http://www.apros.
fi/en/references/nuclear_references [Referenced on 2012-01-16].

https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0080/0080.pdf
https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0080/0080.pdf
http://www.sciencedirect.com/science/article/pii/S1570794609701439
http://www.sciencedirect.com/science/article/pii/S1570794609701439
https://modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0014/0014.pdf
https://modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0014/0014.pdf
https://www.modelica.org/events/modelica2011/Proceedings/pages/papers/18_2_ID_180_a_fv.pdf
https://www.modelica.org/events/modelica2011/Proceedings/pages/papers/18_2_ID_180_a_fv.pdf
http://www.ida.liu.se/~petfr/OpenModelica2009talks/090202-OSMCWorkshop_OliverLenord-OM4BR_public.pdf
http://www.ida.liu.se/~petfr/OpenModelica2009talks/090202-OSMCWorkshop_OliverLenord-OM4BR_public.pdf
http://www.ida.liu.se/~petfr/OpenModelica2009talks/090202-OSMCWorkshop_OliverLenord-OM4BR_public.pdf
http://www.mathcore.com/products/mathmodelica/downloadlite.php
http://www.mathcore.com/products/mathmodelica/downloadlite.php
http://www.apros.fi/en/apros_in_brief_2
http://www.apros.fi/en/references/conventional_power_plant_references
http://www.apros.fi/en/references/conventional_power_plant_references
http://www.apros.fi/en/references/nuclear_references
http://www.apros.fi/en/references/nuclear_references

BIBLIOGRAPHY 82

[42] Paananen, M. and Henttonen, T. Investigations of a Long-
Distance 1000 MW heat transport system with APROS simulation software,
2009. Available at: http://www.apros.fi/filebank/88-SMiRT20_CHP_heat_
transport_system_2009.pdf [Referenced on 2012-01-16].

[43] Apros. Overview. Technical report, Technical Research Centre of Finland,
2011.

[44] Karhela, T. Personal communication, 2011.

[45] Hannelius, T. , Salmenperä , M., and Kuikka, S. Roadmap
to adopting OPC UA. Industrial Informatics, 2008. INDIN 2008.
6th IEEE International Conference on, S. 756–761, July 2008. DOI:
10.1109/INDIN.2008.4618203. Available at: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=4618203 [Referenced on 2012-01-16]. ISSN
1935-4576.

[46] OPC Foundation About OPC - what is OPC? 2011. Available at:
http://opcfoundation.org/Default.aspx/01_about/01_whatis.asp?MID=

AboutOPC [Referenced on 2012-01-16].

[47] OPC Foundation OPC DA 3.00 specification, 2003. Available
at: http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=67&CN=

KEY&CI=283&CU=10 [Referenced on 2012-01-16].

[48] OPC Foundation General assembly meeting 2010.

[49] OPC Foundation OPC data eXchange specification version 1.0, March
2003. Available at: http://www.opcfoundation.org/DownloadFile.aspx?CM=
3&RI=77&CN=KEY&CI=283&CU=13 [Referenced on 2012-01-16].

[50] Mahnke, W., Leitner, S. H., and Damm, M. OPC unified architecture.
Springer-Verlag New York Inc, 2009. ISBN 978-3-540-68898-3.

[51] Leitner, S. H. and Mahnke, W. OPC UA – service-oriented archi-
tecture for industrial applications. ABB Corporate Research Center, 2007.
Available at: http://opclinux.net.ru/files/07.pdf [Referenced on 2011-
08-30].

[52] OPC Foundation OPC UA part 2 - security model 1.01 spec-
ification. Technical report, OPC Foundation, 2009. Available at:
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=415&CN=

KEY&CI=283&CU=10 [Referenced on 2012-01-16].

http://www.apros.fi/filebank/88-SMiRT20_CHP_heat_transport_system_2009.pdf
http://www.apros.fi/filebank/88-SMiRT20_CHP_heat_transport_system_2009.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4618203
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4618203
http://opcfoundation.org/Default.aspx/01_about/01_whatis.asp?MID=AboutOPC
http://opcfoundation.org/Default.aspx/01_about/01_whatis.asp?MID=AboutOPC
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=67&CN=KEY&CI=283&CU=10
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=67&CN=KEY&CI=283&CU=10
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=77&CN=KEY&CI=283&CU=13
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=77&CN=KEY&CI=283&CU=13
http://opclinux.net.ru/files/07.pdf
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=415&CN=KEY&CI=283&CU=10
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=415&CN=KEY&CI=283&CU=10

BIBLIOGRAPHY 83

[53] Burke, T. J . Data exchange. Prime Magazine, 2008(Autumn):
18, 2008. Available at: http://www.onwindows.com/Portals/0/images/

prime-issue-14.pdf [Referenced on 2012-01-16]. ISSN 1747-1370 Issue
14.

[54] Mahnke, W. and Leitner, S. H. OPC unified architecture – the future
standard for communication and information modeling in automation.
ABB Review, 2009(3):56–61, 2009. Available at: http://search.abb.

com/library/Download.aspx?DocumentID=9AKK104295D7245&LanguageCode=

en&DocumentPartID=&Action=Launch&IncludeExternalPublicLimited=True

[Referenced on 2012-01-16]. ISSN 1013-3119.

[55] Mahnke, W. OPC UA with ISA95 for MES and ERP. Presentation, OPC
Day Finland 2011, VTT, Espoo, Finland, 11 October 2011.

[56] Aro, J . OPC unified architecture – uuden sukupolven tiedonsiirtopro-
tokolla automaatiojärjestelmille ja vähän muuhunkin. Automaatioväylä,
2006(4). Available at: www.promaint.net/downloader.asp?id=2184&type=1
[Referenced on 2012-01-16]. ISSN 0784 6428.

[57] Cavalieri , S. and Cutuli , G. Performance evaluation of OPC UA.
In 2010 IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), S. 1–8. IEEE, September 2010. DOI: 10.1109/ETFA.2010.5641184.
Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

5641184 [Referenced on 2012-01-16]. ISBN 978-1-4244-6848-5.

[58] Mattila, M. OPC:n uudet tuulet. Automaatioväylä, 2005(4). Avail-
able at: http://www.automaatioseura.fi/index/tiedostot/OPC_Lisatieto.
pdf [Referenced on 2012-01-16]. ISSN 0784 6428.

[59] Damm, M. OPC UA state-of-the-art. Presentation, OPC Day Finland 2011,
VTT, Espoo, Finland, 11 October 2011.

[60] Unified Automation UA Client-Server SDK c++ 1.0.0: OPC UA
specifications - unified automation GmbH. 2011. Available at: http://doc.
unifiedautomation.com/uasdkcpp/1.0.0/L2OpcUaSpecifications.html

[Referenced on 2012-01-16].

[61] Burke, T. J . , Damm, M., Hunkar, P. , and Kondor, R. Introduction
to OPC UA (OPC unified architecture) webinar, 2010. Available at: http://
www.opcti.com/Resources/ViewResource.aspx?id=411 [Referenced on 2012-
01-16].

http://www.onwindows.com/Portals/0/images/prime-issue-14.pdf
http://www.onwindows.com/Portals/0/images/prime-issue-14.pdf
http://search.abb.com/library/Download.aspx?DocumentID=9AKK104295D7245&LanguageCode=en&DocumentPartID=&Action=Launch&IncludeExternalPublicLimited=True
http://search.abb.com/library/Download.aspx?DocumentID=9AKK104295D7245&LanguageCode=en&DocumentPartID=&Action=Launch&IncludeExternalPublicLimited=True
http://search.abb.com/library/Download.aspx?DocumentID=9AKK104295D7245&LanguageCode=en&DocumentPartID=&Action=Launch&IncludeExternalPublicLimited=True
www.promaint.net/downloader.asp?id=2184&type=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5641184
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5641184
http://www.automaatioseura.fi/index/tiedostot/OPC_Lisatieto.pdf
http://www.automaatioseura.fi/index/tiedostot/OPC_Lisatieto.pdf
http://doc.unifiedautomation.com/uasdkcpp/1.0.0/L2OpcUaSpecifications.html
http://doc.unifiedautomation.com/uasdkcpp/1.0.0/L2OpcUaSpecifications.html
http://www.opcti.com/Resources/ViewResource.aspx?id=411
http://www.opcti.com/Resources/ViewResource.aspx?id=411

BIBLIOGRAPHY 84

[62] Damm, M. Boosting the migration to OPC UA. Presentation, OPC Day
Finland 2011, VTT, Espoo, Finland, 11 October 2011.

[63] Damm, M. Future development of OPC UA and PLCopen. Presentation,
OPC Day Finland 2011, VTT, Espoo, Finland, 11 October 2011.

[64] Peltola, J . and Palonen, O. Targets and experiences of OPC UA
at Valio. Presentation, OPC Day Finland 2011, VTT, Espoo, Finland, 11
October 2011.

[65] Frejborg, A. OPC UA based full-scope database solution. Presentation,
OPC Day Finland 2011, VTT, Espoo, Finland, 11 October 2011.

[66] Hannelius, T. OPC UA across Wapice’s segments – from embedded
to business solutions. Presentation, OPC Day Finland 2011, VTT, Espoo,
Finland, 11 October 2011.

[67] OPC Foundation OPC UA part 3 - address space model 1.01 specifi-
cation, 2009. Available at: http://www.opcfoundation.org/DownloadFile.
aspx?CM=3&RI=338&CN=KEY&CI=283&CU=10 [Referenced on 2012-01-16].

[68] OPC Foundation OPC UA part 4 - services 1.01 specification, 2009.
Available at: http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=
416&CN=KEY&CI=283&CU=10 [Referenced on 2012-01-16].

[69] OPC Foundation OPC UA part 13 - aggregates, release candidate,
version 1.02, May 2011.

[70] OPC Foundation OPC foundation message board :: View topic - com-
munication server-server. 2010. Available at: http://www.opcfoundation.
org/forum/viewtopic.php?t=3531 [Referenced on 2012-01-16].

[71] Damm, M. Data exchange in OPC UA. E-mail, September 2011.

[72] OpenModelica. OpenModelica - revision 10724: /tags/OPENMOD-
ELICA 1 7 0 RC1. 2011. Available at: https://openmodelica.ida.liu.se/
svn/OpenModelica/tags/OPENMODELICA_1_7_0_RC1/ [Referenced on 2012-01-
16].

[73] Unified Automation C++ based OPC UA server SDK. 2011. Available
at: http://www.unified-automation.com/c++-based-opc-ua-server-sdk.

htm [Referenced on 2012-01-16].

[74] Unified Automation UaExpert, 2010. Available at: http://www.

unified-automation.com/uaexpert.htm [Referenced on 2012-01-16].

http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=338&CN=KEY&CI=283&CU=10
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=338&CN=KEY&CI=283&CU=10
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=416&CN=KEY&CI=283&CU=10
http://www.opcfoundation.org/DownloadFile.aspx?CM=3&RI=416&CN=KEY&CI=283&CU=10
http://www.opcfoundation.org/forum/viewtopic.php?t=3531
http://www.opcfoundation.org/forum/viewtopic.php?t=3531
https://openmodelica.ida.liu.se/svn/OpenModelica/tags/OPENMODELICA_1_7_0_RC1/
https://openmodelica.ida.liu.se/svn/OpenModelica/tags/OPENMODELICA_1_7_0_RC1/
http://www.unified-automation.com/c++-based-opc-ua-server-sdk.htm
http://www.unified-automation.com/c++-based-opc-ua-server-sdk.htm
http://www.unified-automation.com/uaexpert.htm
http://www.unified-automation.com/uaexpert.htm

BIBLIOGRAPHY 85

[75] Peltoniemi, J . , Laakso, P. , and Miettinen, T. Adda (Advanced
data access) -interface documentation for OPC COM DA kit or XML DA kit
users (version 0.8 draft). Technical report, VTT Tehnical Research Centre of
Finland, March 2011. Available at: https://openmodelica.ida.liu.se/svn/
OpenModelica/trunk/doc/opc/AddaInterfaceDescriptionDraft.pdf [Refer-
enced on 2012-01-16].

[76] OpenModelica. OpenModelica SVN. 2012. Available at: https://
openmodelica.ida.liu.se/svn/OpenModelica/ [Referenced on 2012-01-16].

[77] Iwanitz, F. and Lange, J . OPC – Fundamentals, Implementation, and
Application. Huthig Verlag Heidelberg, 3rd rev. ed. edition, 2006. ISBN
3-7785-2904-8.

[78] Microsoft. QueryPerformanceCounter function. 2011. Available at:
http://msdn.microsoft.com/en-us/library/ms644904 [Referenced on 2012-
01-16].

[79] Peltoniemi, J . , Karhela, T. , and Paljakka, M. Performance eval-
uation of OPC-based I/O of a dynamic process simulator. In Proceed-
ings of the 2001 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS), Orlando, Florida, pp.
231U00F8e236, SCS, ISBN, S. 5, 2001. Available at: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.111.7314&rep=rep1&type=pdf [Ref-
erenced on 2012-01-16].

[80] Wolfram Research Inc. Simple directed graph – from wol-
fram MathWorld. 2011. Available at: http://mathworld.wolfram.com/

SimpleDirectedGraph.html [Referenced on 2012-01-16].

https://openmodelica.ida.liu.se/svn/OpenModelica/trunk/doc/opc/AddaInterfaceDescriptionDraft.pdf
https://openmodelica.ida.liu.se/svn/OpenModelica/trunk/doc/opc/AddaInterfaceDescriptionDraft.pdf
https://openmodelica.ida.liu.se/svn/OpenModelica/
https://openmodelica.ida.liu.se/svn/OpenModelica/
http://msdn.microsoft.com/en-us/library/ms644904
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.7314&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.7314&rep=rep1&type=pdf
http://mathworld.wolfram.com/SimpleDirectedGraph.html
http://mathworld.wolfram.com/SimpleDirectedGraph.html

Appendix A

Methods for Connection Configura-
tion

This appendix presents the OPC UA methods, with their parameters presented,
that are used in synchronized co-simulation. The images are taken from the
UaExpert [74] OPC UA client by Unified Automation.

Figure A.1: SetTickLength

86

APPENDIX A. METHODS FOR CONNECTION CONFIGURATION 87

Figure A.2: Source server: Add

Figure A.3: Source server: Modify

Figure A.4: Source server: Delete

APPENDIX A. METHODS FOR CONNECTION CONFIGURATION 88

Figure A.5: DxConnection: Add

APPENDIX A. METHODS FOR CONNECTION CONFIGURATION 89

Figure A.6: DxConnection: Modify

Figure A.7: DxConnection: Delete

Appendix B

connectionconfig.xsd Schema

This appendix is connectionconfig.xsd XML Schema which is used to define how
the configuration between the multiple simulators is stored. The ComplexType
DXConnection definition is based on the OPC DX specification [49].
<?xml version=” 1.0 ” encoding=” utf −8” ?>
<s:schema id=” connect ionconf ig ”

targetNamespace=” h t t p : //www. v t t . f i /OPCUA/ connect ionconf ig . xsd ”
elementFormDefault=” q u a l i f i e d ”
xmlns:mstns=” h t t p : //www. v t t . f i /OPCUA/ connect ionconf ig . xsd ”
xmlns=” h t t p : //www. v t t . f i /OPCUA/ connect ionconf ig . xsd ”
xmlns:s=” h t t p : //www. w3 . org /2001/XMLSchema”

>

<s :e lement name=” OpcServerConfig ”>
<s:complexType>
<s : sequence>
<s :e lement name=” DxConnectionConfig ” minOccurs=”0”>
<s:complexType>
<s : sequence>
<s :e lement name=” Tick ”>
<s:complexType>
<s : sequence>
<s :e lement name=”Length”/>

</ s : sequence>
</ s:complexType>

</ s :e lement>
<s :e lement name=” ServerConnections ” minOccurs=”0”>
<s:complexType>
<s : sequence>
<s :e lement name=” Connection ” minOccurs=”0” maxOccurs=”unbounded”>
<s:complexType>
<s : sequence>
<s :e lement name=” Enabled ” type=” s :boo lean ”/>
<s :e lement name=” Subscr iber ”>
<s:complexType>
<s : sequence>
<s :e lement name=” Url ” type=” s : s t r i n g ”/>
<s :e lement name=”Name” type=” s : s t r i n g ”/>

</ s : sequence>
</ s:complexType>

</ s :e lement>
<s :e lement name=” Subscr ibee ”>

90

APPENDIX B. CONNECTIONCONFIG.XSD SCHEMA 91

<s:complexType>
<s : sequence>
<s :e lement name=” Url ” type=” s : s t r i n g ”/>
<s :e lement name=”Name” type=” s : s t r i n g ”/>

</ s : sequence>
</ s:complexType>

</ s :e lement>
<s :e lement name=” ItemConnections ” minOccurs=”0”>
<s:complexType>
<s : sequence>
<s :e lement name=”DxConnection” type=”DXConnection”

minOccurs=”0” maxOccurs=”unbounded”/>
</ s : sequence>

</ s:complexType>
</ s :e lement>

</ s : sequence>
</ s:complexType>

</ s :e lement>
</ s : sequence>

</ s:complexType>
</ s :e lement>

</ s : sequence>
</ s:complexType>

</ s :e lement>
</ s : sequence>

</ s:complexType>
</ s :e lement>

<s:complexType name=”DXConnection”>
<s : sequence>
<s :e lement name=”BrowsePath” type=” s : s t r i n g ”

minOccurs=”0” maxOccurs=”unbounded” />
<s :e lement name=” Descr ipt ion ” type=” s : s t r i n g ” />
<s :e lement name=” DefaultOverrideValue ” n i l l a b l e =” true ” />
<s :e lement name=” Subst i tuteValue ” n i l l a b l e =” true ” />
<s :e lement name=”VendorData” type=” s : s t r i n g ” />

</ s : sequence>
< s : a t t r i b u t e name=”DxItemPath” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=”DxItemName” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=”DxItemId” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=” Version ” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=”Keyword” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=” DefaultSourceItemConnected ” type=” s :boo lean ” />
< s : a t t r i b u t e name=” DefaultTargetItemConnected ” type=” s :boo lean ” />
< s : a t t r i b u t e name=” DefaultOverridden ” type=” s :boo lean ” />
< s : a t t r i b u t e name=” EnableSubst i tuteValue ” type=” s :boo lean ” />
< s : a t t r i b u t e name=” TargetItemPath ” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=”TargetItemName” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=” TargetItemId ” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=” TargetNamespaceIndex ” type=” s :uns ignedInt ” />
< s : a t t r i b u t e name=” SourceItemPath ” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=”SourceItemName” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=” SourceItemId ” type=” s : s t r i n g ” />
< s : a t t r i b u t e name=”SourceNamespaceIndex” type=” s :uns ignedInt ” />
< s : a t t r i b u t e name=”QueueSize ” type=” s :uns ignedInt ” />
< s : a t t r i b u t e name=”UpdateRate ” type=” s :uns ignedInt ” />
< s : a t t r i b u t e name=”Deadband” type=” s :double ” />

</ s:complexType>
</ s:schema>

Appendix C

ConnectionConfig.xml Example

This appendix is an example of a ConnectionConfig.xml based on the connec-
tionconfig.xsd XML schema. This ConnectionConfig.xml is the one used in the
performance evaluation of two simulators with one signal generator each and
with the sync interval of 200 milliseconds.
<?xml version=” 1.0 ” encoding=”UTF−8” ?>
<OpcServerConfig xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema”

xmlns=” h t t p : //www. v t t . f i /OPCUA/ connect ionconf ig . xsd ”>
<DxConnectionConfig>

<Tick>
<Length>0.2</ Length>

</ Tick>

<ServerConnections>

<Connection>

<Enabled> t rue</ Enabled>

<Subscr iber>
<Url>opc . t c p : / / [NodeName] :4850</ Url>
<Name>Signal Generator 1</Name>

</ Subscr iber>

<Subscr ibee>
<Url>opc . t c p : / / [NodeName] :4855</ Url>
<Name>Signal Generator 1 b</Name>

</ Subscr ibee>

<ItemConnections>

<DxConnection
DxItemId=”DX. DXConnectionsRoot . S ignal Generator 1 b . connection1 ”
DxItemName=” connection1 ”
TargetItemPath=””
TargetItemName=””
TargetItemId=” constant1 . k”
TargetNamespaceIndex=”2”
SourceItemPath=””
SourceItemName=””

92

APPENDIX C. CONNECTIONCONFIG.XML EXAMPLE 93

SourceItemId=” sine1 . y”
SourceNamespaceIndex=”2”

>

<BrowsePath>Signal Generator 1 b</ BrowsePath>
<Descr ipt ion></ Descr ipt ion>

<DefaultOverrideValue />
<Subst i tuteValue />
<VendorData/>

</DxConnection>

</ ItemConnections>

</ Connection>

<Connection>

<Enabled> t rue</ Enabled>

<Subscr iber>
<Url>opc . t c p : / / [NodeName] :4855</ Url>
<Name>Signal Generator 1 b</Name>

</ Subscr iber>

<Subscr ibee>
<Url>opc . t c p : / / [NodeName] :4850</ Url>
<Name>Signal Generator 1</Name>

</ Subscr ibee>

<ItemConnections>

<DxConnection
DxItemId=”DX. DXConnectionsRoot . S ignal Generator 1 . connection1 ”
DxItemName=” connection1 ”
TargetItemPath=””
TargetItemName=””
TargetItemId=” constant1 . k”
SourceItemPath=””
SourceItemName=””
SourceItemId=” sine1 . y”
SourceNamespaceIndex=”2”

>

<BrowsePath>Signal Generator 1</ BrowsePath>
<Descr ipt ion></ Descr ipt ion>

<DefaultOverrideValue />
<Subst i tuteValue />
<VendorData/>

</DxConnection>

</ ItemConnections>

</ Connection>

</ ServerConnections>

</ DxConnectionConfig>
</ OpcServerConfig>

	Cover page
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goal and Scope of the Thesis
	1.3 Methods
	1.4 Structure of the Thesis

	2 Computer Simulation Technology
	2.1 Computer Simulation in General
	2.2 Categories of Simulation
	2.2.1 Dynamic vs. Steady-state Simulation
	2.2.2 Continuous vs. Discrete-event Simulation
	2.2.3 Process Simulation
	2.2.4 Parallel and Distributed Simulation
	2.2.5 Cooperative Simulation

	2.3 Synchronization
	2.4 Simulation Tools Used in This Work
	2.4.1 The Modelica Language
	2.4.2 OpenModelica
	2.4.3 Apros
	2.4.4 Comparison

	3 OPC Interfaces
	3.1 Classic OPC
	3.1.1 Basis and Applications
	3.1.2 OPC Data eXchange

	3.2 OPC Unified Architecture
	3.2.1 Technical Differences between the Classic OPC and OPC UA
	3.2.2 Advantages and Uses
	3.2.3 Disadvantages and Criticism
	3.2.4 Status and Future Development

	3.3 Functionalities of OPC UA – a Detailed View
	3.3.1 Address Space Model
	3.3.2 Services
	3.3.3 Exchanging Data

	4 Research Approach
	4.1 Design and Implementation
	4.2 Tests
	4.3 Tools

	5 Design
	5.1 Qualitative Goals of the Design
	5.2 Architecture of the OPC UA Server
	5.3 Synchronization
	5.4 OPC UA Client and Connection Configuration Management

	6 Implementation
	6.1 OPC UA Interface in OpenModelica and Apros
	6.1.1 Adda Interface
	6.1.2 OpenModelica Frontend
	6.1.3 Implementation Details of the OPC UA Server

	6.2 Technical Details of the Synchronization Mechanism
	6.3 Connection Configuration Management
	6.3.1 Address Space
	6.3.2 Configuring the Connection via OPC UA
	6.3.3 Storing the Configuration

	7 Testing and Evaluation
	7.1 Tests
	7.1.1 Basic Control Model Co-simulation
	7.1.2 Scalability
	7.1.3 Different Topologies

	7.2 Discussion

	8 Conclusions
	Bibliography
	A Methods for Connection Configuration
	B connectionconfig.xsd Schema
	C ConnectionConfig.xml Example

