
ONTOLOGY APPROACH FOR BUILDING
AND VISUALISING PROCESS SIMULATION
MODELS USING 2D VECTOR GRAPHICS

Tuukka Lehtonen ∗,1 Tommi Karhela ∗,1

∗ Technical Research Centre of Finland, P.O.Box 1000,
FIN-02044 VTT, tuukka.lehtonen@vtt.fi

Abstract: Large-scale process simulation models are commonly created using 2D
graphical user interfaces. Simulation data visualisation is typically done using
textual monitors, symbol animations and colour coding. We propose an ontological
approach for building and visualising 2D process models. An ontology-based
approach using semantic networks for both of these tasks is presented. The key
advantages of this approach are the unification of the data model (semantic graph),
automation of modelling tasks by inference and synchronization between concepts
of different ontologies via rule-based ontology mapping.

Keywords: Process Modelling, Process Simulation, Visualisation, Vector
Graphics, Ontology

1. INTRODUCTION

Dynamic large-scale process simulation is used
in industry for process and control design, con-
trol system testing and for operator training and
support. Process modelling and simulation envi-
ronments are usually separate software systems
where simulation models are configured through
graphical diagrams similar to so called flow dia-
grams or process and instrumentation diagrams.
In addition simulation environments also visualise
simulation data in these diagrams using textual
monitors, symbol animations and colour coding.
Software solutions for building such environments
include several conceptual layers such as graphical
concepts, process and instrumentation concepts,
simulation solver configuration concepts and con-
cepts of the mathematical solution layer. In this
study a new approach for describing and mapping
these layers is introduced. In this approach seman-
tic technologies are used for ontology description
and mapping. The emphasis is on an ontology for

1 http://www.vtt.fi

describing 2D vector graphics and on its mappings
to other layers of large scale process simulation.
The advantage of this approach is the flexibility
of using different standards and approaches in
different layers and changing them in a modelling
environment that supports this approach.

First the ontologies related to this work are intro-
duced in sections 2 and 3. In section 4 the method
and ontology for ontology mapping is described.
Section 5 describes our approach to ontological
process modelling and section 6 deals with the
simulation aspect respectively.

2. BASE ONTOLOGY

2.1 Semantic Graph

The World Wide Web Consortium (W3C) Seman-
tic Web community promotes knowledge represen-
tation as a graph of resources. The semantic web
is a directed graph of nodes and edges, where the
nodes are typically called resources. The edges of

the graph describe various relationships between
the resources and they correspond to some re-
source in the semantic graph.

The Resource Description Framework (RDF) is
a standard for semantic information representa-
tion and data exchange in the web. RDF uses
(subject, predicate, object) triples to represent
graph data. Each triple defines a relation between
two resources. Suggested approach uses similar
triple-based model in lowest level data storage,
versioning and retrieval framework.

2.2 Upper Ontologies — Layer Zero

To be able to describe actual knowledge higher
level descriptions of concepts, i.e. ontologies, are
required. Information is typically organized into
domain specific ontologies which define them-
selves based on other ontologies. In a unified
knowledge representation system the domain on-
tologies need to be based on some common upper
ontology, which defines fundamental things, such
as types and relations to be used in construc-
tion of higher level ontologies. Upper ontologies
have been developed usually from many differ-
ent viewpoints and agendas. W3C Web Ontology
Language (OWL) is an example of a popular
upper ontology. The scope of upper ontologies
ranges from “all of human consensus reality” of
the Cyc project (Cycorp, 1994) to “representation
of oil and gas production facility life cycle” of ISO
15926.

Based on OWL and other such ontologies, a sim-
ilar upper ontology called Layer Zero, has been
developed. Its fundamental concepts are divided
into types and instances. Instances are created
from types by instantiation and the instances
derive their properties from the types. All types
can have properties, dubbed qualifiers, which are
available to instances.

Base types of Layer Zero are object types, property
types and relation types. Object types are used
to define domain concepts, property types define
the properties of domain concepts (object types)
and finally relation types define the relations that
can be used to semantically connect the domain
concepts. Relation types correspond to the edges
of the semantic graph and their domains and
ranges are defined restrictively. Property types
are used to contain primitive data or they can be
composited.

Object Type

Shape Type

Path Type

Rectangle Type

Circle Type

Polygon Type

Polyline Type

Line Type

Shape Group Type

Ellipse Type

Inherits

Inherits

Text Area Type

Symbol Type Diagram Type

Inherits

Fig. 1. Object type hierarchy of basic 2D shapes.

3. MODELLING AND SIMULATION
ONTOLOGIES

3.1 2D Graphics Ontology

The 2D graphics ontology is defined on top of
Layer Zero. It is a vector graphics representation
based on the Scalable Vector Graphics (SVG)
specification by W3C. SVG documents can be
used to create animatable graphical objects where
the animation can be bound to time or based
on dynamic SVG documents via scripting with
standard JavaScript.

This approach focuses on taking elements and
Modules of the SVG specification (SVG 1.2 Tiny)
related to the diagram methods of process mod-
elling and simulation domain and constructing an
ontology from them. At the moment only the bare
necessities are mapped, but further mapping is
possible if deemed necessary.

To describe basic graphical shapes and compose
them the SVG Shape Module is needed to define
general paths and basic shapes. An element for
grouping is needed to create composite elements.
To support textual elements part of the SVG Text
Module is also needed.

Derived from these needs, the object types of
the 2D graphics ontology and their inheritance
hierarchy is depicted in Figure 1. These types
form graphical representation part of the ontology.
Each primitive is inherited from Shape Type to
give each Shape Type some common or optional
properties, such as an affine transformation or
styling attributes.

height (m)

radius (m)

fill level (%)

Fig. 2. Example parametrization of a Tank process
component symbol. Here the fill level param-
eter could be changed during simulation to
visually illustrate the fullness of the tank.

All of the corresponding SVG elements have at-
tributes which are mapped directly to string-form
property types of the object types in Figure 1.
Examples of such attributes are the center point
and radius of a circle or a path outline defini-
tion string. How these primitives are rendered
depends on their styling attributes which again
are mapped to optional properties of each prim-
itive element. Stroke and fill related attributes
are the main styling attributes for basic shapes.
These attributes completely determine the actual
appearance. Configurability of visual appearance
is a high priority. It is needed to support the
creation of useful and illustrative user interfaces
for different domains.

Using these shape type definitions graphical ob-
jects without any meaning can be created by
instantiating them in a hierarchy in the same
fashion as in SVG.

In order to support real-time visualisation of e.g.
simulation results a mechanism for modifying the
appearance and shape of the different graphical el-
ements at runtime is needed. This can be achieved
by either modifying the general affine transforma-
tion of a shape or modifying the type specific pa-
rameters of a shape such as the definition of a gen-
eral path or the contents of a text area. Modifying
the transformation gives limited possibilities for
animation but the possibilities of modifying any
parameter of the graphical elements are limited
only by performance issues.

There are several ways to perform the modifica-
tion of the properties of graphical objects. This
approach relies on parametrization of graphical
shapes and mapping of the parameters to the
primitive shapes of a particular shape composi-
tion. Such a parametrized shape is called a Symbol
Type. Symbol Types may have many graphical
representations, i.e. hierarchies of Shape Type in-
stances connected to them. One of the purposes
of this type is to give a meaning to the graphical
presentation, for instance by creating a symbol for
a process component such as a tank parametrized
as shown in Figure 2.

Finally to support building graphical representa-
tions of process models a Diagram Type object is
introduced to aggregate the actual model layout.
Diagrams are made up of symbol instances where
the symbols may be e.g. standard process compo-
nents, textual monitors or visual monitors such as
different kinds of trends.

3.2 Pipeline Structure Ontology

The pipeline structure ontology has been defined
for describing the Process and Instrumentation
(P&I) model data content and on the other hand
for exchanging information from the functional
design to the detailed 3D design. It is formed
on the basis of a standard draft proposed by the
Finnish process industry standardisation centre
(PSK). It can be used to define pipelines, branches
and pipeline components and connect these to-
gether.

The ontology describes concepts to define plant
models that consist of plant objects. Models are
made out of pipelines consisting of branches which
in turn consist of different pipeline components.
Pipelines and branches connect process equip-
ments such as pump and tanks together. All
the defined plant objects are considered functions
since they fulfil some functional purpose in a pro-
cess, thus defining the process in an abstract man-
ner. An example of such a function is pumping.
Functions in the pipeline generally describe oper-
ating, dimensioning, and testing values as prop-
erties which are normally defined by the person
modelling the process.

The concept of a product is introduced to describe
actual products that are chosen to fulfil functions
in the pipeline such as a pump X by manufacturer
Y. Product specifications give the properties of
each product their individual nominal and bound-
ary operating values which affect the choice of a
product for a function.

In order to support plant life cycle management a
concept of a product individual is also included in
the ontology. Individuals are instances of a given
product that in turn have their own individual
operating values.

3.3 Companion Model Ontology

The companion model approach suggested by
Juslin (Juslin, 2005) describes a generic frame-
work for modelling and simulation of industrial
processes. The companion model ontology cre-
ated from this framework defines a simulation
flow network consisting of nodes and edges called
branches. It is used here merely to emphasise the

differences between process modelling and simu-
lation level concepts.

4. ONTOLOGY MAPPINGS

To visualise the results of a simulation with the
three specified ontologies, the simulation model
values need to be carried to symbol parameters
in a configurable way. Vice versa to configure the
simulation model in the first place we need to be
able to construct the simulation model graphically
from the modelled pipeline. Also any changes
made directly to a pipeline data model should
propagate to both the graphics model and the
simulation model.

Thus a method for describing similarities between
the ontologies and propagating changes in one
ontology to another with an arbitrary mapping
is needed. This makes it possible to keep the
different models synchronized.

To perform the needed functions, multiple kinds
of mappings are needed. The simplest mappings
merely synchronize property values between ob-
jects of different ontologies where as more complex
mappings even generate new or remove old objects
based on changes in the models. Logical inference
has been previously applied for similar problems
in ontological 3D visualisation (Kalogerakis et
al., 2006).

The mapping ontology defines concepts for mod-
elling rules which define arbitrary reactions to
given states of the data model. These reactions
can then be used to perform simple property map-
pings and even complex generative updates.

5. AN ONTOLOGICAL PROCESS
MODELLING AND SIMULATION

APPROACH

There are multiple ways of building process and
simulation models. The most common way is to
use a graphical user interface for visually drawing
the model. Simulators are often separate software
packages and thus modelling applications may
need to be able to export their graphical models
into formats desired by the simulator interfaces.
To provide feedback the simulation results need
to be retrieved and interpreted. Current modelling
environments are usually tightly bound to a single
graphical, structural and simulation model de-
pending on the separation of models. It is also pos-
sible to directly create structural and simulation
models, that do not contain any graphics informa-
tion and feed them to a simulator. Yet this is often
tedious and inconvenient and does not provide for
illustrative and in context visualisation.

2D Graphics
Ontology

Pipeline Structure
Ontology

Companion Model
Ontology

Layer
Zero

 Uses

Mappings Mappings

Mapping
Ontology Uses

Fig. 3. The dependencies and relationships be-
tween the described ontologies.

The main idea in this approach is to create tools
based on a semantic graph data model for graph-
ically building graphical models of processes, e.g.
P&I diagrams, and create mapping rules to take
care of the models of related ontologies as auto-
matically as possible. This means the rules must
handle automatic generation of models of other
ontologies and propagation of changes in one
model to another where possible. Depending on
the desired level of automation these rules may
become quite complex. Figure 3 illustrates the
case described in this paper.

To graphically build a model top-down, one could
insert the main boundary components into the
model such as tanks, draw pipelines or create
other connections between them. Afterwards the
connections or pipelines could be modified by in-
serting equipments such as pumps or valves in
between. Another way is to start from a cer-
tain equipment and incrementally draw pipelines
while at the same time appending equipments
into them. In either case the pipeline is bound
to be modified during modelling or simulation
thus requiring the possibility of freely adding into
and removing parts from the pipeline structure
without the user having to start all over.

By requiring the user to insert every element into
the graphical model that corresponds to some
structural model element, i.e. a manual one-to-one
mapping, creates unnecessary burden for the user.
E.g. a pipeline specification may state that cer-
tain types of collars and flanges must be inserted
between equipments and pipes. To ease the mod-
elling burden these specifications can be utilized
to automatically generate necessary components
into the pipeline by creating rules to enforce these
policies.

It is also possible for the user to have an existing
structural model of a process, possibly in an
interchange format exported by another modelling
tool. In this case a graphical model could be
generated from the structural information. It is
possible that there is not enough information
to generate an orderly graphical model, yet the
generated version can serve as a good starting

point for further modelling instead of manually
constructing the graphics.

While the process is being modelled, the simu-
lation companion model is kept synchronized to
the structural model by a set of mappings as
depicted in Figure 3. It would also be possible
to map graphics directly to the companion model
ontology in order to graphically build companion
models. Being very low-level, the model would be
harder to understand than a graphical pipeline
structure model.

One of the main advantages of this approach,
is the freedom of association provided by the
semantic graph data model. It allows for arbitrary
relations to be created between any elements in
the graph. Yet in order to take advantage of
these relations a user interface must be aware
of their semantics. This means the user interface
is only as reusable as are the ontologies it is
based on. On the other hand the semantic graph
data model allows for unified data containment
of any ontologies and models making it easier to
create new or improve old user interfaces with
new semantic features based on another set of
relations. Also to add support for a new ontology
in a tool the user interface need not necessarily be
replaced completely or at all. E.g. if the pipeline
structure ontology was to be replaced with an ISO
10303-221 Application Protocol (AP-221) based
ontology, the graphical modelling user interface
could be reused as long as appropriate mappings
could be created between the graphics ontology
and the companion model ontology.

Some possible general semantic relationships and
their uses for queries in a 3D modelling context
are outlined in (Kalogerakis et al., 2006). Similar
queries could be applied in this context.

The greatest challenges in this approach lie in
making the use and definition of ontology map-
pings easy enough to be used by any commonplace
user without huge amounts of domain knowledge.
E.g. a modeller does not necessarily need to know
whether his structural models are being repre-
sented using the PSK ontology or an AP-221
based ontology.

6. VISUALISATION OF PROCESS
SIMULATION

Visualisation in this context refers to somehow
taking advantage of the results of a simulation
for showing them to the user in various ways
to illustrate how the modelled process actually
works. This is nothing new for current process
modelling and simulation software.

To get simulation up and running, first a simulator
is needed. An external simulator could be used

but for better integration and also evaluation of
the semantic graph platform a companion model
solver based on the semantic graph has been de-
veloped. Next a companion model needs to be
created. With suitable assumptions the compan-
ion model is close to a one-to-one or one-to-many
mapping of the structural model into Nodes and
Branches thus making automatic generation and
propagating changes to and from the simulation
model feasible.

As outlined in the previous sections the changes
to the structural model need to propagate to the
parameter properties of graphics model objects
in order to visualise the current simulated state.
The only thing remaining is to input new outlines
for the graphical shapes that have changed to the
rendering engine and re-render the model.

An obvious challenge arising from this approach
is performance. Usually in large-scale dynamic
process simulation the changes in the simulation
results are not very rapid. The important thing
for the observer is that the visualisation conveys
the actual results, not that the visualisation runs
in real-time. If the visualisation only conveys
the current value of a property, we might end
up dropping the value of some time step in the
simulation. On the other hand if the property
values are visualised as trends showing a history
of simulation results, they can be updated less
frequently without actually dropping results.

During simulation the propagation of changes
happens mostly in one direction, i.e. the simu-
lator to the graphics model. On the other hand
changes will be propagated or made directly to
the simulation model when the user wants to
tweak model parameters. In order to have fast vi-
sualisation of simulation results, the propagation
of simulation results needs to be very efficient.
Since the semantic graph consists of versioned and
persistent triples it is too heavy to be used to
convey simulation results on every simulation time
step. Therefore a separate shared memory channel
called Value Set is used for the propagation of
property value changes during simulation.

7. CONCLUSIONS

In this paper, we presented an ontological ap-
proach for building and visualising 2D process
models using a semantic web based unified graph
data model. First we overviewed the used up-
per ontology and the ontologies for representing
process models in the graphical, structural and
simulation domain. Next we proposed a general
rule-based mapping approach to synchronize the
contents of the models from different ontologies.
This restricts the ontology coupling to the map-

ping descriptions. If appropriate mappings be-
tween ontologies can be formed model reuse and
ontology changeability can be achieved. Finally
our approach to graphical process modelling and
simulation was described. The biggest challenges
in this method lie in the complexity of ontology
mapping. As the mappings grow in number and
complexity, unseen performance and scalability
issues are likely to surface.

REFERENCES

Cycorp (1994). Cyc. http://www.cyc.com/.
[referenced 15.5.2006].

Juslin, K. (2005). A Companion Model Ap-
proach to Modelling and Simulation of In-
dustrial Processes. VTT Publications. ISBN
951-38-6660-2.

Kalogerakis, E., S. Christodoulakis and
N. Moumoutzis (2006). Coupling ontologies
with graphics content for knowledge driven
visualization. In: Virtual Reality, 2006. IEEE.
pp. 43–50. 25-29 March 2006.

