
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Laboratory of Software Technology

Tuukka Lehtonen

Ontology-Based Diagram Methods in Process
Modelling and Simulation

Master’s Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Technology.

Espoo, May 7, 2007

Supervisor: Professor Eljas Soisalon-Soininen

Instructor: Tommi Karhela, D.Sc. (Tech.)

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS

Author: Tuukka Lehtonen

Name of the Thesis: Ontology-Based Diagram methods in Process Modelling

and Simulation

Date: May 7, 2007 Number of pages: XII + 94

Department: Department of Computer Science and Engineering

Professorship: T-106 Software Technology

Supervisor: Prof. Eljas Soisalon-Soininen

Instructor: Tommi Karhela, D.Sc. (Tech.)

Configuration of process models often involves drawing of process flow diagrams
(PFD) or piping and instrument diagrams (P&ID), which can be considered schematic
illustrations of an underlying process information model. In the process industry, dia-
grams connected to a process information model are referred to as intelligent diagrams.

By integrating simulation facilities with an intelligent diagramming environment, a
designer is allowed continuous testing of models and faster discovery of design flaws.
Simulation results can also be used to drive intuitive and informative visualisations
of process state. This combination of simulation and diagram visualisation has been
referred to in the industry as behaving diagrams.

In this thesis, a graphics framework and an ontology-based flowsheet diagramming
tool implementation are presented to serve as groundwork for a future implementa-
tion of behaving diagrams. Using this tool a case-specific simulation model can be
kept synchronised with a modelled diagram through an ontology mapping mecha-
nism. Ontologies were defined for simulation, 2D graphics, diagrams and ontology
mappings. Everything is modelled in a unified graph data model, which allows highly
versatile association of information. The defined ontologies, implementations and a
simulation case are presented and mirrored against the requirements set for the work.

Keywords: diagram, ontology, process modelling, simulation

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Tuukka Lehtonen

Työn nimi: Ontologiapohjaiset kaaviomenetelmät

prosessimallinnuksessa ja -simuloinnissa

Päivämäärä: 7.5.2007 Sivuja: XII + 94

Osasto: Tietotekniikan osasto

Professuuri: T-106 Ohjelmistotekniikka

Työn valvoja: Prof. Eljas Soisalon-Soininen

Työn ohjaaja: TkT Tommi Karhela

Prosessimalleja konfiguroidaan usein piirtämällä virtauskaavioita tai PI-kaavioita, joi-
ta voidaan pitää allaolevaa tehdastietomallia kuvaavina kaavamaisina piirroksina.
Kaavioita, jotka on liitetty tehdastietomalliin, kutsutaan prosessiteollisuudessa älyk-
käiksi kaavioiksi.

Integroimalla simulaatiopalveluita älykkääseen kaavionpiirtoympäristöön voidaan
tarjota suunnittelijalle mahdollisuus mallien jatkuvaan testaukseen ja täten suunnit-
teluvirheiden nopeampaan havaitsemiseen. Simulaatiotuloksia voidaan myös visua-
lisoida kaavioilla, jolloin mallintaja saa paremman käsityksen prosessin käyttäytymi-
sestä. Kyseisellä tavalla simulaatiota ja visualisointia yhdistävistä kaavioista on käy-
tetty teollisuudessa nimitystä käyttäytyvät kaaviot.

Tässä työssä esitellään grafikkasovelluskehys ja ontologiapohjainen vuokaavionpiir-
totyökalu, jotka tulevat toimimaan pohjana käyttäytyvien kaavioiden ympäristön ke-
hitykselle. Määritellemällä ontologioiden välisiä kuvauksia, voidaan kyseisellä työ-
kalulla pitää simulaatiomalli yhtenäisenä kaaviomallin kanssa. Ontologioita määritel-
lään simulaatiomallille, 2D grafiikalle, kaavioille sekä ontologioiden välisille kuvauk-
sille. Mallinnus pohjautuu yhtenäiseen graafitietomalliin, joka mahdollistaa tiedon va-
paan yhdistelyn. Työssä esitetään määritellyt ontologiat, ohjelmistototeutukset, sekä
simuloitava esimerkkiprosessimalli ja peilataan tuloksia määriteltyjä vaatimuksia vas-
ten.

Avainsanat: kaaviokuva, ontologia, prosessimallinnus, simulointi

iii

Acknowledgements

I want to thank my supervisor for his help and comments on my thesis.

I consider myself lucky to have had a most knowledgeable instructor and a good friend
with me during this process and throughout the last two years — thank you.

My gratitude also goes to all the people at VTT who have helped me on my way, and
especially my fellow thesis-workers for fruitful collaboration and pleasant company.

Finally, I would like to thank my parents, siblings and friends for all the possible support
one could ever want.

I’ll take the red pill, please. I want to see how deep this rabbit hole goes.

Espoo, May 7, 2007

Tuukka Lehtonen

iv

Contents

Abbreviations vii

Glossary ix

List of Figures xii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives and Scope . 3
1.3 Structure of the Thesis . 4

2 Technology Review 5
2.1 Ontology-Based Modelling . 5

2.1.1 Interoperability and Integration . 5
2.1.2 Ontologies . 6
2.1.3 Designing Ontologies . 9
2.1.4 Ontologies in Practice . 9
2.1.5 Semantic Data Storage . 12
2.1.6 Querying Semantic Models . 13

2.2 Graphical Modelling . 15
2.2.1 2D Graphics . 15
2.2.2 Graphical Editing Frameworks . 21

2.3 Process Modelling and Simulation . 26
2.3.1 ISO 10628 . 26
2.3.2 ISO 10303 AP-221 . 27
2.3.3 Process Simulation . 28
2.3.4 Existing Tools . 30

3 Requirement analysis 35
3.1 User Roles . 35

3.1.1 Kernel Developer . 35
3.1.2 Library Developer . 36
3.1.3 Model Configurator . 38
3.1.4 Model User . 39

v

4 Implementation Environment 40
4.1 Simantics . 40
4.2 Layer0 . 41

4.2.1 Data Model . 42
4.2.2 Part Division . 43

4.3 Client-Server Model . 47
4.3.1 ProCore . 47
4.3.2 Transactions . 48
4.3.3 Undo . 50

4.4 Plug-ins . 51
4.5 Simulation . 51
4.6 Trending . 52

5 Design 53
5.1 Ontologies . 53

5.1.1 Vector Graphics Ontology . 53
5.1.2 Structural Modelling Ontology . 55
5.1.3 Flowsheet Diagramming Ontology 56
5.1.4 Domain-specific Flowsheet Diagramming Ontologies 57
5.1.5 Ontology Mappings . 58

5.2 Symbol Design . 60
5.2.1 Parametrisation . 60

5.3 Diagram Typing . 61

6 Implementation 62
6.1 Ontology Design . 62
6.2 Graphical Editing Framework . 63

6.2.1 Supporting Technologies . 63
6.2.2 Dissection of the Framework . 64

6.3 Flowsheet Editors . 70
6.3.1 Symbol Editor . 71
6.3.2 Diagram Editor . 73

7 Results and Evaluation 75
7.1 CASE: Flowsheet modelling of a multi-phase chemical process 75

7.1.1 Scalability . 78
7.1.2 Usability . 79
7.1.3 Case Conclusions . 79

7.2 Ontologies . 80
7.2.1 Scalability . 81

7.3 Ontology-based Modelling and Mapping 83

8 Conclusions 85

vi

Abbreviations

API Application Programming Interface

CAD Computer-Aided Design

CSG Constructive Solid Geometry

DAML The DARPA Agent Markup Language

DOM Document Object Model

EAI Enterprise Application Integration

EII Enterprise Information Integration

EMF Eclipse Modelling Framework

GEF Graphical Editing Framework

GMF Graphical Modelling Framework

GVT Graphics Vector Toolkit

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JDT Java Development Tools (part of Eclipse SDK)

MOF Meta Object Facility

MVC Model-View-Controller

NIST National Institute of Standard and Technology

OIL Ontology Inference Layer

vii

OMG Object Management Group

OWL Web Ontology Language

PFD Process Flow Diagram

PGML Precision Graphics Markup Language

P&ID Piping and Instrument Diagram

RCP (Eclipse) Rich Client Platform

RDF Resource Description Framework

RDFS RDF Schema

SVG Scalable Vector Graphics

UML Unified Modeling Language

URI Uniform Resource Identifier

VML Vector Markup Language

W3C World Wide Web Consortium

XML Extensible Markup Language

viii

Glossary

Notation Description

conceptualisation An abstract, simplified view of the world
that we wish to represent for some pur-
pose. [Gru93]

7

edge-labelled graph A graph where the vertices are treated as in-
distinguisable and the edges are given distin-
guishable labels.

7

experiment An test conducted on a process model in or-
der to answer questions about the modelled
process.

28

graph A model consisting of vertices and edges be-
tween those vertices.

7

ontology (1) Philosophically, the study of what might
exist. [Flo03] (2) From the knowledge engi-
neering point of view, an explicit specifica-
tion of a conceptualisation. [Gru93]

7

process model A computer interpretable representation of
a process. For example process simulation
models are often mathematical models.

28

process plant Facilities and structures necessary for per-
forming a process. [Int97]

26

process simulation An experiment made with a process model. 28

ix

Notation Description

process Sequence of chemical, physical or biological
operations for the conversion, transport or
storage of material or energy. [Int97]

26

x

List of Figures

2.1 The basic RDF graph data model illustrated 10
2.2 An example RDF graph . 11
2.3 Examples of technical illustrations in WebCGM format 16
2.4 Example SVG file and rendered output . 18
2.5 Image space composition example. 20
2.6 The Model-View-Controller architecture . 22
2.7 Updating the SVG DOM in Batik . 23
2.8 Apros Grades in action . 30
2.9 Example Balas simulation model . 32

3.1 Use cases of kernel developer . 36
3.2 Use cases of library developer . 37
3.3 Use cases of model configurator . 38

4.1 Triples in the semantic graph . 43
4.2 Primitive data associated with the graph of resources 43
4.3 Layer0 parts and their dependencies . 44
4.4 An example of the Layer0 typing system . 45
4.5 An example of defining relation types with Layer0. 46
4.6 An example of defining enumerations with Layer0. 46
4.7 The Simantics environment illustrated . 48

5.1 Vector Graphics ontology types . 54
5.2 Graphics Node hierarchy example . 54
5.3 Type hierarchy related to the Transform property 55
5.4 An example of structural modelling ontology 56
5.5 Basic flowsheet diagram model examples 57
5.6 Ontology dependencies with mapping ontologies 59
5.7 The purpose of structural model mapping ontology 59

xi

5.8 An example of symbol parametrisation . 60

6.1 Coordinate spaces in 2D rendering . 66
6.2 User interface canvas component interfaces. 66
6.3 Canvas component implementations. 67
6.4 Canvas painting customisation interfaces. 67
6.5 An MVC view of the integration of SVG and Batik 68
6.6 The SVG context abstraction illustrated . 68
6.7 The SVG layering abstraction illustrated . 69
6.8 Canvas interaction interfaces and classes 70
6.9 Symbol editor with Washer symbol . 71
6.10 Diagram of washer internals created with the diagram editor 73
6.11 Editing a bleaching process diagram . 74

7.1 The triples of a Transform property . 81

xii

Chapter 1

Introduction

1.1 Background and Motivation

Generally speaking, an industrial process can be viewed as a kind of activity or a network
of related activities. An activity on the other hand is simply something that occurs. Pro-
cess modelling is thus the act of designing such a network of activities, be that design a
paper drawing, a CAD drawing or a geometric 3D model. Process models tend to grow
too complex too quickly for a person to intuitively understand how they actually work.
This is where process simulators come into play. They allow us to see how our process
would function under given conditions. The main purpose of process modelling and
simulation is to create more or less complete virtual models and to simulate and validate
their behaviour before actually building the processes in real life.

Processes and modelling as such are enormously broad concepts. Even by examining
modelling and simulation in the industrial plant modelling context there is a very large
selection of disciplines in use. In an industrial plant project modelling gradually pro-
ceeds from highly conceptual design to actual implementation design. Each stage of this
modelling process has different goals and each can benefit from simulation.

Different modelling disciplines create different kinds of data, i.e. different models. Take
for example piping and instrument diagram (P&ID) design. P&I diagrams are a schematic
illustration of functional relationship of piping, instrumentation and system equipment
components. The keywords in this definition are “schematic illustration”. Diagrams are,
in essence, only an illustration of the topology and components of the underlying process.
They are a model consisting of graphical symbols and their connections that is separate
from the underlying process information model. Now, it is possible to draw a P&ID with

1

CHAPTER 1. INTRODUCTION 2

any common image manipulation software. Needless to say, the user experience will not
be very optimized for the task. Even worse, the created schematic image will not contain
any information about the process, its topology nor the involved process components
in computer interpretable form. On the other hand, a software tailored for P&ID design
could manipulate the underlying process information model simultaneously while the
designer creates a P&I diagram. Even better, the diagram model contents could automat-
ically be bound to corresponding elements in the process information model, making
all this information accessible to the P&ID designer. In the process industry, diagrams
bound to process information models are referred to as intelligent diagrams.

From the point of view of a P&ID designer it would be very useful to have simulation
integrated into the used modelling environment. This would allow the designer to in-
crementally construct and test the process model being created. This way the designer
could very quickly see that the model is broken and is given better chances of rapidly
discovering the culprit. Having such tight data and simulation integration also enables
many useful features in user interfaces. Simulation results can be used to drive different
kinds of visualisations which can provide the user valuable information about the state
of the process faster and more intuitively. This kind of transparency of simulation and
diagram animation has been referred to in the industry as behaving diagrams.

The current reality is that intelligent diagramming features are offered by many com-
mercial grade solutions. Alas, behaving diagrams, i.e. simulation integration is not very
advanced in many domains - in fact its rather non-existent. An extreme example of very
loose data integration is that often P&ID designs are completely recreated for the simu-
lators by copying the design from printouts into the simulation software. In this case the
simulation model is completely disconnected from the original model which amounts to
even more administrative headache if the original design gets updated. Obviously this
feels like a waste of time compared to the utopia of behaving diagrams. With proper data
integration the simulation model could be constructed from the same underlying process
information model that the diagram is bound to in intelligent diagrams.

To realize this integration utopia a highly expressive and versatile information model is
needed. Based on the idea of the Semantic Web ontology-based modelling techniques
seem like the current best bet for the future. Using a versatile, unified, computer inter-
pretable base modelling language provides for complex data integration, more efficient
user interfaces and hopefully more intelligent software.

CHAPTER 1. INTRODUCTION 3

1.2 Objectives and Scope

This thesis is part of the Semill and Simbiot Research Projects conducted by the Techni-
cal Research Centre of Finland (VTT), Tampere University of Technology and Helsinki
University of Technology.

The Goal of the Semill project is to study the application of semantic web technologies
in plant modelling in order to provide better semantic information for the plant lifecycle
supporting services.

The Simbiot project studies computational and information technological methods for
plant model based multi-scale process simulation. The goal is to define semantic plant
model extensions based on an open source simulation platform that enables the utilisa-
tion of process simulation on a new basis.

Design and implementation effort related to this thesis is performed in an ontology-based
environment which is introduced in chapter 4. The primary objectives of this thesis are
to:

• Define a semantic connection between graphical data models and information models. This
also involves the construction of ontologies for the graphical representations.

• Create a framework and a tool for integrated flowsheet diagramming and simulation visu-
alisation on an ontology-based platform. The framework should be generic enough to
be usable for most kinds of diagramming in the process modelling and simulation
domain.

It seems obvious that there is no such thing as a single generic graphical editor that is
optimally suited for all possible workflows in 2D design. Often the main difference is
in the content that is being communicated with a drawing. Layout sketches emphasise
geometry and measures whereas P&ID focuses on process topology. These differences
affect the nature of the tools needed for the job.

In order to create valuable, user-friendly diagramming tools for specific domains, cus-
tomisation may be needed. Therefore, any graphical editing framework created in this
thesis is kept on a fairly generic level. Instead, the created diagramming tools are cus-
tomised towards flowsheet-style process modelling because many of the problems re-
lated to this work can be expressed with flowsheet drawings.

CHAPTER 1. INTRODUCTION 4

1.3 Structure of the Thesis

This thesis is divided into 7 chapters.

Chapter 1 is this introduction which provides the motivation, objectives and scope for
this thesis.

Chapter 2 reviews the technologies related to the diagramming domain in the scope of
this thesis. This includes ontologies and ontological data storage and processing, two
dimensional graphics, industrial process design standards and a round-up of existing
software frameworks and tools closely related to this work.

Chapter 3 analyses the different users and their requirements for the diagramming tools
and framework implemented in this work.

Chapter 4 gives a semi-detailed overview of the used software implementation environ-
ment.

Chapter 5 focuses on the design and use of the ontologies created for the implementation.

Chapter 6 takes a shallow dive into the actual implementation.

Chapter 7 presents the results and evaluation in general and through a flowsheet dia-
gramming demonstration case.

Chapter 2

Technology Review

2.1 Ontology-Based Modelling

Although the concept of an ontology has quite a long history, ontologies and semantic
ontology-based modelling have become a hot research topics only during recent years.
With the emergence of the idea of the Semantic Web the interest has grown steadily, even
among the industry. Before stepping into the ontology world, the current interoperability
and integration issues deserve a review.

2.1.1 Interoperability and Integration

We live in a highly heterogeneous environment of data and applications. For almost
every application domain there is a variety of software available, most of which use their
own methods and formats for data storage and exchange. Naturally if such applications
of a single domain would like to exchange data, they would need a common protocol for
conversation. If no international or de facto standards are available, it is highly unlikely
that these applications are able to talk to each other.

Interoperability is commonly understood as the ability of distributed system components
to exchange services and data with one another. Semantic interoperability in turn refers
to making this data exchange make sense according to a common understanding of the
data or service requests. [Hei95, OS99]

Semantic integration has also been a much discussed topic among database researches as
noted in a recent survey [DH05]. The terms semantic integration and semantic interoper-
ability are used somewhat interchangeably when talking about enabling data exchange

5

CHAPTER 2. TECHNOLOGY REVIEW 6

between applications in a semantic way. The study of semantic integration began already
in the early 1980’s in the form of schema matching and schema integration in the database
research community [BLN86]. Schema integration is about (semi-)automatically finding
the similarities (matches) between a given set of structured data schemas and merging
them into a global schema. Schema integration research has produced different kinds of
rule-based and learning-based methods for doing this [DH05].

Data integration refers to the problem of combining data residing at different sources and
providing the user with a unified view of these data [Len02]. A familiar example of a data
integration application may be found in public libraries that often provide access to lit-
erature databases that are combined from multiple sources under a single search engine.
Scientific article search engines on the internet are also applications of data integration.

As described in [HRO06], data integration issues started getting commercial attention in
the late 1990’s and today this application field is known as Enterprise Information Integra-
tion (EII). EII generally focuses on the data and making queries on it. A slightly more
mature sector, Enterprise Application Integration (EAI) instead focuses on use of software
and architectural principles to integrate a set of applications for supporting certain work-
flows in a certain application domain.

All this talk about interoperability and integration applies to the process industry sector
as well. Naturally an organisation can provide itself application integration by forcing
the use of a certain set of proven applications. However, along with the growth of global
internetworking of organisations and companies, interoperability problems are bound to
surface through the use of such vendor-lockdown integration tactics. Financially speak-
ing, NIST interoperability studies [oSN04] conservatively estimate that 15.8 billion dol-
lars were lost in 2002 on poor integration and information exchange problems in the
capital facility industry alone. This is a clear indication that work remains to be done in
the area of interoperability.

2.1.2 Ontologies

Ontology-based modelling is a fundamental building block of this thesis, but what it
actually means is usually unclear to the general public. According to [Flo03] the word
ontology originates from philosophy referring quite pretentiously to “the study of what
might exist”. It is often considered synonymous to metaphysics — a term used by stu-
dents of Aristotle. In the philosophical sense, ontology is often thought of as an exhaus-
tive classification of all existing entities, which obviously is an enormous task. In the
context of this thesis though, ontologies are being looked at from a more practical onto-

CHAPTER 2. TECHNOLOGY REVIEW 7

logical engineering point of view. For this purpose a more recent definition of ontology
by Gruber [Gru93] is more appropriate:

An ontology is an explicit specification of a conceptualisation.

Gruber defines a conceptualisation as an abstract, simplified view of the world that we wish to
represent for some purpose. An explicit specification could also be called a formal description.
An example of such a formal description could be a file written in a machine-readable
and -understandable encoding. The fundamental idea is that description actually stores
the semantics of the conceptualisation being covered. The definition also emphasizes
practicality by confining to a specific world to represent instead of classifying the whole
universe.

Another, a bit more concrete definition for the word conceptualisation can be extracted
from W3C’s Web Ontology Language (OWL) specification [Wor04c] as describing “the
kinds of entities in the world and how they are related”. The two keywords here are entities
and related. They suggest that the data model used for describing ontologies is graph-
like — just identify entities as graph vertices (nodes) and relations as graph edges. Conse-
quently the data model for ontologies is not strictly structured, but rather semistructured
where basically any entity can be associated with another entity by an identifiable rela-
tion. [Bun97] overviews the concept of semi-structured data and also states that the data
representation is graph-like and in an example, refers to the model as an edge-labelled
graph. This definition implies that the edges of the graph model are actually the creators
of the formal description, i.e. the ontology.

The above talk about data models lacks a very important aspect — what are ontologies
actually for? In [UG96] three main problem areas are identified that suffer from the lack
of a shared understanding that ontologies could provide:

• Communication between people and organisations with different needs and view-
points arising from their differing contexts.

• Interoperability between systems is severely hindered by the use of disparate mod-
elling methods, paradigms, languages and software tools. Ontologies could be
used as an inter-lingua to unify the field.

• Systems engineering, in particular, specification, reliability and reusability. Having a
shared understanding can help people of different domains in IT system specifica-
tion, potentially provide for more reliable software through automated consistency

CHAPTER 2. TECHNOLOGY REVIEW 8

checking, and enable better reusability of information and models through reusable
formal encoding.

As [UG96, Roc04] point out, ontologies can actually take many forms depending on their
intended use. Firstly, the formality of the specification can vary between highly-informal,
semi-informal, semi-formal and rigorously-formal, i.e. anything from loose natural lan-
guage specifications to meticulously defined terms with formal semantics, theorems and
proofs of soundness and completeness. Secondly, the type of the represented knowledge
varies. For example, the following types are identified in bottom-up order:

• a meta-ontology, also called ontology languages, specify the concepts and princi-
ples for defining other ontologies. Commonly this includes concepts like class and
property.

• a generic ontology, also known as top or upper ontologies, which try to model gen-
eral concepts of the surrounding world up to varying degrees without regard to
particular domains or applications. Time, space, and mathematics are all examples
of general concepts.

• a domain ontology embraces a certain domain in a generic fashion, thus aiming for
reusability in that domain.

• an application ontology gathers more or less specialized knowledge for a particular
task. In general these ontologies are not reusable.

Although this is just one possible categorisation, even a very rough one, a similar cate-
gorisation has been used by another author also [Gua98].

Whereas the previous section focused on semantic integration in the database world,
[KS03] and [Noy04] review ontology-based approaches for semantic integration. Ontol-
ogy mapping is advertised as the key technique for integrating data models of different
domains in ontology-based modelling. Many mapping methods have been explored —
some involving logic descriptions, some based on creating mapping ontologies on top
of the mapped ontologies. In principle ontology mapping is about finding similarities
between ontologies and creating mappings for transforming instance data of one ontol-
ogy to instance data of another ontology, either manually or (semi-)automatically. For
thorough reviews of previously researched methods, see [KS03, KHRS05].

CHAPTER 2. TECHNOLOGY REVIEW 9

2.1.3 Designing Ontologies

When ontologies are designed, decisions are made on how to represent things. In [Gru95],
Gruber fittingly states on design evaluation as follows:

To guide and evaluate our designs, we need objective criteria that are founded on the
purpose of the resulting artifact, rather than based on a priori notions of naturalness
or Truth.

Gruber also proposes a preliminary set of design criteria for ontologies with the purpose
of knowledge sharing and interoperation among programs. These principles are only
summarised here as deemed necessary for evaluation purposes — see the original article
for more complete definitions.

Clarity: An ontology should effectively communicate the intended meaning of the de-
fined terms. The definitions should be objective, formally as complete as possible
and documented with natural language.

Coherence: A coherent ontology should sanction inferences that are consistent with both
formal and informal definitions of terms. Inferences contradictory with given ax-
ioms make an ontology incoherent.

Extendibility: An ontology should be designed to anticipate the uses of its shared vo-
cabulary. The representation should allow for extension and specialisation of the
ontology monotonically. In other words, one should be able to use the existing
vocabulary to define new terms without having to revision the existing definitions.

Minimal encoding bias: The ontology should be specified without dependence on a
particular encoding. An encoding bias results when representation choices are
made for the convenience of notation or implementation. Encoding bias should
be minimized to maximize the usability of the ontology in different systems.

Minimal ontological commitment: An ontology should make as few claims as possible
about the world being modelled, allowing the parties committed to the ontology
freedom to specialise the ontology as needed.

2.1.4 Ontologies in Practice

In general, ontology modelling is about identifying the relevant entities and their prop-
erties (relationships) in the modelled domain. The purpose of this section is to examine

CHAPTER 2. TECHNOLOGY REVIEW 10

languages for metadata representation and ontology modelling relevant for this thesis.
The discussion is therefore limited to W3C standards.

Resource Description Framework — RDF

In subsection 2.1.2 ontologies were gathered to be formulatable as semistructured, edge-
labelled graph models. This abstraction is very close to one reality. The Resource Descrip-
tion Framework (RDF) [Wor99] by W3C is a Semantic Web standard for representing in-
formation about named resources, also known as metadata representation. In other words,
RDF provides a way to make statements about resources, by creating named relationships
between them. These statements are expressed as (s p o) triples, where p (predicate) iden-
tifies the relationship between the resources s (subject) and o (object). In the RDF lingo the
predicate is also known as the property of the triple. Therefore one way of reading a triple
is: “s has a property p with the value o”. To make these statements machine processable,
the triple parts need to be made identifiable. RDF uses URI references [ea98] to supply
these identifications. Thus in effect, the RDF data model is an edge-labeled directed graph,
formed out of simple triples. Figure 2.1 shows how this model is generally illustrated.

subject object
predicate

Figure 2.1: The basic RDF graph data model illustrated.

Representation of primitive data, such as strings and numbers, is done with literals in
RDF. Literals can contain arbitrary primitive values encoded as unicode strings which
are not confined by the URI specification. Literals do not have a separate identifier in
addition to the literal value. Therefore a single literal can only be referred to once in a
single triple, i.e. literals are not shared. As this implies, literal graph nodes never have
outgoing edges and can only occur as the object of RDF statements. Figure 2.2 shows an
example of an actual RDF graph with resources and a literal.

In order to store RDF graph models an encoding is needed. There are several serialization
formats available, such as the XML-based RDF/XML [Wor04b]. Still, as [Her06] states, it
is important to think of RDF models in terms of graphs and mind the serialization only
as “syntactic sugar”. Listing 2.1 shows how the RDF model in Figure 2.2 would look in
RDF/XML.

CHAPTER 2. TECHNOLOGY REVIEW 11

http://www.example.org#me

http://users.tkk.fi/∼tvlehton/me.png

foaf:img

foaf:Person
rdf:type

Tuukka Lehtonen

foaf:name

Figure 2.2: An example RDF graph illustrating three statements about a person. Re-
sources are marked with ellipses and literals with rectangles.

Listing 2.1: RDF/XML serialization of Figure 2.2

<?xml version="1.0" encoding="UTF-8" ?>
< !DOCTYPE rdf:RDF [

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
< ! ENTITY f o a f ’http://xmlns.com/foaf/0.1/’>

] >
<rdf:RDF xmlns :rdf="&rdf;" xmlns : foa f="&foaf;" >

< r d f : D e s c r i p t i o n r d f : a b o u t="http://www.example.org#me">
< r d f : t y p e r d f : r e s o u r c e ="&foaf;Person"/>
<foaf:name>Tuukka Lehtonen</foaf:name>
<foaf : img r d f : r e s o u r c e ="http://users.tkk.fi/~tvlehton/me.png"/>

</ r d f : D e s c r i p t i o n >
</rdf:RDF>

RDF Schema

RDF only provides a model for expressing statements about resources with named prop-
erties and values. It does not provide any means to create application-specific vocabu-
laries of types (classes) and properties and therefore is not a solution for semantic inter-
operability as such. RDF combined with RDF Schema (RDFS) [Wor04a] is a step in the
direction of vocabulary description.

The core vocabulary of RDF and RDFS consist of classes, properties, subclass and subprop-
erty relationships and property domain and range restrictions. Using these primitives, new
class and property hierarchies can be specified and property domain and range can be
defined. Note that these property domain and range definitions are universal for the re-

CHAPTER 2. TECHNOLOGY REVIEW 12

stricted property, not in the context of class definitions. See [Tuu06] for a more in-depth
review of these features.

Web Ontology Language — OWL

OWL [Wor04c] has been W3C’s recommended language for ontology definition since
February 2004. It is based on the RDF and is derived from several earlier languages, es-
pecially DAML+OIL which was used as a starting point for design. OWL allows for more
complex class description than RDFS, via for example class-specific property restrictions
and property cardinality restrictions. OWL comes in three variants of increasing expres-
sive power: OWL Lite ⊂ OWL DL ⊂ OWL Full. For details, see [Tuu06].

2.1.5 Semantic Data Storage

In most software systems, especially in useful and scalable ones, data persistence (stor-
age) is needed. Semantic modelling tools are no different. As previously established,
one way to express a graph model holding statements about resources is using triples for
describing each statement separately. These triples are infact all it takes to describe data,
metadata and ontologies.

General database systems can be used to store relations of arbitrary arity. A data model
consisting of triples on the other hand only describes binary relations, i.e. relations with
two participants, the subject and the object. This is the simplest possible relational model,
but at the same time it is also highly versatile. The simple binary relation structure
can be used to construct more complex relation structures. Compared to supporting
arbitrary arity relations, sticking with binary relations only simplifies the storage layer.
Implementation-wise, with this simple data model, everything boils down to storing and
indexing a set of triples as efficiently as possible. Such components are often called triple
stores.

As RDF has been a W3C recommendation since 1998, many triple stores have built-in
support for the RDF data model and its semantics. These implementations often call
themselves RDF stores. At the moment both open source and commercial RDF stores ex-
ist, which advertise scalability to hundreds of millions of triples or more. [Gea06, Ora05,
Inc07]

CHAPTER 2. TECHNOLOGY REVIEW 13

2.1.6 Querying Semantic Models

The purpose of user interfaces is usually to offer a user a view into an underlying data
model. To present that view the user interface needs to access that data model. In systems
backed by relational databases SQL is the standard protocol, or query language for this
purpose. In the semantic graph data model case, a mechanism for querying statement
triples is needed. Generally speaking, the results of these queries are a subset of the
set of triples in the whole model — usually a very small subset. If logical inferencing
is supported, the query results may also contain statements entailing from the existing
statements. For example, RDFS and OWL have a set of entailment rules which can be
used to derive the new knowledge from existing statements.

There are several possible ways of querying the triple model. Since triple stores are
still a fairly new concept compared to relational databases, a de facto query language
standard has not really emerged yet. The strongest contender for the future is W3C’s
SPARQL [Wor06]. Instead of a whole query language, a more simple to implement way
of accessing the graph data is browsing it relation by relation. In the following, these two
query mechanisms are examined in more detail.

Browsing

People are familiar with browsing the internet through web pages. Because of the binary
relational model of triple stores browsing the graph data model though named relation-
ships is actually very similar to web browsing.

To browse the graph, a starting point is needed. This can be any resource in the graph.
Triple stores generally support varying types of queries based on the three triple ele-
ments, subject, predicate and object. Generally the way to issue sensible queries is to
constrain a part or parts of the result triples to certain values. The simplest example
would be to query for all triplets which have the subject http://www.example.org#me. The
result would be the set of triples in the current model that have the specified subject and
anything as their predicate and object. To further constrain the query, the predicate could
be fixed to rdf:type. In the example case of Figure 2.2 this would result in a single triple:

(http://www.example.org#me, rdf:type, foaf:Person).

The following enumerates the types of browsing queries that make sense to perform:

• all triples with subject s,

CHAPTER 2. TECHNOLOGY REVIEW 14

• all triples with object o (resources, not literals),

• all triples with subject s and predicate p,

• all triples with object o and predicate p,

• all triples with predicate class p.

With the idea of subproperties and their logical entailments we can state that if resource
s has a property p′ which is a subproperty of p, s also has a property p. This logic should
be employed in the browsing queries specifying predicates to make them more useful.

Query Languages

The concept of semi-structured data has spawned research on querying semi-structured
models, such as [ea97]. Previously triple stores have offered their own alternative query
languages, such as iTQL in Kowari or RDQL in Jena. Among others, RDQL has been
used as a basis for the SPARQL specification. Recent triple store implementations have
been mostly focusing on implementing SPARQL, such as Mulgara [Gea06] or Allegro-
Graph [Inc07].

SPARQL and its predecessors bear high resemblance to SQL. Both use a SELECT clause
to identify the desired query results but differ in the use of WHERE clauses. In SPARQL
the WHERE clauses consist triple patterns (?s ?p ?o) and literal value constraints. Just as
in simple graph browsing methods, these triple patterns can contain variables (e.g. ?s) or
constrained values and the variables can be used in the SELECT clauses for gathering the
results. By chaining variables with multiple triple patterns (e.g. {(?x ?p1 ?y), (?y ?p2 ?z),
. . .}) a single query can traverse through multiple relations in the graph and collect re-
sults from there. In a sense, graph query languages simply offer syntactic sugar on top
of a the simple step-by-step browsing API.

For the common developer, standardised query languages offer an easy to use protocol
for versatile data access. Relational databases would probably be far less popular if SQL
did not exist. The same goes for triple stores also.

CHAPTER 2. TECHNOLOGY REVIEW 15

2.2 Graphical Modelling

2.2.1 2D Graphics

Two-dimensional (2D) graphics is used in the process industry for many purposes, such
as drawing diagrams on different levels of detail. 2D and 3D graphics are often used in
close combination when different design disciplines are integrated.

Vector Graphics

A digital image is usually a regular 2D grid of pixels. Simple raster images do not quite
cover what is interpreted as computer graphics. As Duce et al. describe in [DHH02],
computer graphics is about more than just showing pixels but rather about creating, ma-
nipulating, analysing and interacting with pictorial data using computers. Interaction
with raster images is fairly limited, especially for hyperlinking on the web. Still, raster
images are a good representation for photographs and artistic drawings, which are really
created just to be viewed and possibly manipulated without the need interaction. Using
compressed image file formats photographs can generally be stored more efficiently than
by using vector-based representations.

In principle vector graphics is about having a set mathematically defined graphical el-
ements for constructing geometry, such as rectangles, ellipses, polylines, polygons and
smooth curves. Since these elements are mathematically defined, they can be unlimitedly
scaled (zoomed). To make the geometry visual, i.e. to rasterize the geometry representa-
tion, a kind of paint is needed. In 2D vector graphics, paint can generally be applied in
two ways, filling and stroking. Filling means applying a specific paint (e.g. a flat color or
gradient) to the interior area of a specific graphical element. Stroking refers to painting
the outline of a graphical element with a specific brush where the brush attributes define
how the outline will look.

Standards

Although there are several vector graphics content production applications on the market
most of them have their own proprietary formats. The following only focuses on open
standards, which are supported by most viable vendors.

CHAPTER 2. TECHNOLOGY REVIEW 16

WebCGM

Already in 1987, Computer Graphics Metafile (CGM) [Int99] first became an ISO standard
for storing and exchanging graphics. It can handle vector, raster and text data and it has
been used mainly for technical illustration (TI) in aerospace, defense, automotive and
electronics industries among others. Technical illustration is a market of its own which
is not that keen on stylability or other fancy aspects as it is on precise and complete
specification of graphics. CGM is often used as the format of the final output that end
users look at, not for engineering CAD data exchange. CAD drawings are also often used
for creating the initial 2D illustrations. [Aut98].

Some industrial sectors have created their own CGM profiles. Profiles are subsets of the
original specification and their purpose is to improve interoperability within a specific
community. The problem was that these profiles lacked a vendor-neutral and interoper-
able hyperlinking mechanism. In 1999 the WebCGM profile [Wor01] was first released
to fill this gap. The WebCGM profile adds additional constraints to improve interoper-
ability, defines how hyperlinking works in accordance with current web technologies,
and defines mechanisms for use in HTML. The WebCGM 2.0 specification [Wor07] was
recently released, adding some important feature requirements that were left out of 1.0.
See Figure 2.3 for WebCGM technical illustration examples. 1

CGMopen/NIST Viewer Test Suite
WebCGM Ed. 1.0 Release 1.0
BIGCGM02 20010404
BIGCGM02.CGM ClrClass:m
Picture: monochrome Serial:

CGMopen/NIST Viewer Test Suite
WebCGM Ed. 1.0 Release 1.0
BIGCGM01 20010404
BIGCGM01.CGM ClrClass:m
Picture: monochrome Serial:

Figure 2.3: Examples of technical illustrations in WebCGM format. (Courtesy of
WebCGM 1.0 Conformance Test Suite)

CGM itself allows for defining multiple encodings but the binary encoding is the most
used one. CGM is optimized for small size since the amount of graphical primitives can

1Images courtesy of WebCGM 1.0 Conformance Test Suite: http://www.cgmopen.org/resources/
test/index.html. Copyright ©2002, Lofton Henderson. All Rights Reserved.

http://www.cgmopen.org/resources/test/index.html
http://www.cgmopen.org/resources/test/index.html

CHAPTER 2. TECHNOLOGY REVIEW 17

easily grow up to tens of thousands.

An important characteristic of WebCGM is its completeness. It explicitly prohibits the
inclusion of any and all private data. This forces both vendors and users to stay with a
a rich but strictly limited set of functionality and features to achieve the common goal of
interoperability.

CGM in general is designed to be self-contained, which means that it does not need
data from outside the single file to produce a proper rasterized result image. Being self-
contained is a requirement from the point of view of versioning and illustration manage-
ment because in large projects the amount of separate drawings can grow to thousands
or even more. Yet, linking to the outside world from the drawings is allowed, as creation
of links between drawings is of high importance.

Requirements such as reliability, longevity and interoperability are of key value for tech-
nical graphics. Drawings need to stand the test of time, otherwise previous work is lost.
For example the Boeing 747 aircraft has been developed and illustrated in the late 60s
and early 70s and those illustrations are still in use today. The amount of illustrations
needed to document such a Boeing (approximately 70000) is also something worth con-
sidering. [LW01, HW04]

SVG

SVG was born out of the desire and need for a high quality vector graphics standard on
the web with extensibility in the late 90s. It is an application of XML and oriented for a
different market than WebCGM. While CGM is intended purely for technical illustration,
SVG tries to address graphic design for advertising, clip art, business presentations and
general web use, requiring complex fills, restyling, image clipping and manipulation, re-
usable components and animation. It is designed to be stylable and to work well across
platforms, output resolutions and color spaces. Good integration with XML and other
W3C specifications is considered one of its key characteristics. SVG was not only an up-
grade from raster graphics to vector graphics on the web, but also an attempt to achieve
print-like quality on web pages. The specification was created based on several proposal
submissions to the working group, such PGML [Ado98] and VML [Mic98]. The current
recommended standard is SVG 1.1 [Wor03], 1.2 Tiny is a candidate recommendation and
1.2 Full is a working draft. [DHH02, HW04]

The current standard encoding of SVG is XML. Just as an XML document, an SVG doc-
ument is made up of a hierarchy of elements. Each element in turn can have named at-

CHAPTER 2. TECHNOLOGY REVIEW 18

tributes. At the root of an SVG document is an <svg> element. Figure 2.4 shows an ex-
ample of an SVG document along with the rendered output. SVG defines an element

<?xml version="1.0" standalone="no"?>
< !DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
xmlns="http://www.w3.org/2000/svg" version="1.1">

<desc>Example rect02 − rounded rectangles</desc>
< !−− Show o u t l i n e o f canvas us ing ’rect’ e l e m e n t −−>
< r e c t x="1" y="1" width="1198" height="398"

f i l l ="none" s t roke="blue" stroke−width="2"/>
< r e c t x="100" y="100" width="400" height="200" rx="50"

f i l l ="green" />
<g transform="translate(700 210) rotate(-30)">

< r e c t x="0" y="0" width="400" height="200" rx="50"
f i l l ="none" s t roke="purple" stroke−width="30" />

</g>
</svg>

Figure 2.4: An example of a simple SVG file (top) with the rendered output (bottom).

for each supported graphical primitive, such as <rect>, <circle> and <path>. Primitive
elements cannot have primitive subelements. SVG defines the <g> element for grouping
together related graphical elements. Graphical element re-use is made possible through
the <use> element. Styling can be added with specific attributes on graphical elements or
standard CSS mechanisms. Rendering an SVG document is done by a pre-order traver-
sal of the document tree. Rendering order can thus be controlled by reordering graphical
and grouping elements in the document tree.

SVG content can be animated through modifying animatable attributes of graphical ele-
ments which can currently be done in two ways:

• Using SVG’s animation elements, which allow the definition of time-based attribute
value interpolations.

• Using the SVG DOM (Document Object Model) API to directly manipulate the

CHAPTER 2. TECHNOLOGY REVIEW 19

structure and content of an SVG Document.

In the context of process modelling and simulation, both animation methods can be con-
sidered useful, but for different purposes. Using animation elements is possible only if
there is data available for attribute value interpolation. Consider a case where a simu-
lation run had been completed which produced a series of result values along with an
animated visual presentation of those results. SVG animation elements could be used for
exporting a self-contained version of this animation for stand-alone presentation later
on. Generally speaking, SVG animations are well suited for off-line 2D visualisation pur-
poses in process modelling. Instead, for real-time simulation result or process data visu-
alisation the only option is the DOM API because there simply are no values available
for SVG attribute interpolation.

SVG has been applied both in normal applications and on the web. It allows for example
desktop icons or application graphics to be stored more compactly than corresponding
raster graphics. Some vector graphics editors support SVG as as a storage or graphics
exchange format. SVG has also been applied in web-based mapping applications for
diffent kinds of visualisations of geographic data [Car, uis, CS04]. During the recent
years accelerated graphics has been pushing into the embedded device market. After the
release of the OpenVG standard [Khr], SVG has also gained much interest among mobile
developers for many of the same purposes as on the desktop.

SVG has also been applied for ontology-based visualisation purposes. [ILO06] presents
an approach where SVG is used for visualisation of geographic data in OWL format. The
geographic data is described according to OTN (Ontology of Transportation Networks)
which the authors also developed. They achieved highly flexible and extensible configu-
ration of visualisations through the use of a separate SVG transformation ontology which
describes how to transform OTN into SVG. Configuration of this transformation is only a
matter of changing the used instances transformation ontology concepts. [LK06] outlines
the ontology-based diagramming implementation presented in this thesis.

Image Composition

Porter and Duff first introduced the idea of implementing image composition as a post-
processing operationg in [PD84]. They separate mattes from the 3-channel RGB images
which represent the coverage info of the RGB image, also known as the alpha-channel of
the image. Using these mattes one can take several images and layer them on top of
each other and composite their pixel values according to their original color coverage. A

CHAPTER 2. TECHNOLOGY REVIEW 20

useful set of basic composition operations were also introduced.

This approach works in image space, on rasterized pixels and their coverage information
only, which makes the approach nicely uniform. One of the main uses of image space
compositing is finalizing graphics for user viewing, by filtering and combining image
layers.

The current SVG 1.1 standard recommendation has support for composition through
combining filter effects into a DAG (Directed Acyclic Graph) where source images get
passed through the filters of choice, in the end producing a composited result image.
The SVG 1.2 Tiny candicate recommendation attempts to simplify the definition of com-
positing through simple composition operation (comp-op) attributes in graphical primi-
tives. [Nor05]

In the context of diagramming and process model diagrams, this kind of composition
could be utilized for visualisation purposes. For example, one could create animated
symbols of process components, e.g. tanks with fill level visualisations by compositing
a simple rectangular shape on top of a more complex base layer representing a tank.
Figure 2.5 illustrates the idea.

Figure 2.5: Image space composition example.

Constructive Geometry

Another way of combining different graphical elements, is to use constructive geometry
techniques. As the name suggests, it is about constructing new geometry by combin-
ing existing geometry with different operations, such as unions, intersections and differ-
ences. Correspondingly, in 3D this is referred to as Constructive Solid Geometry (CSG).
One implementation for performing these operations in 2D is GPC [Mur] and another in
pure Java is JTS [Inc].

Constructive geometry is highly useful in pretty much any geometric modelling applica-
tion, from simple 2D layout sketching to 3D modelling. Generally geometric modelling
starts from simple graphical primitives and through several cuts, extrusions, unions and
other operations, the details are added to the geometry.

In practice one could use constructive geometry for composition purposes as described

CHAPTER 2. TECHNOLOGY REVIEW 21

in the tank visualisation example in the previous section. By intersecting a complex base
geometry with a layer representing the tank fill level the geometry that visualises the fill
level of the tank can be attained and rendered separately. The main difference between
these approaches is that of whether new geometry is created or not.

The usefulness of constructive geometry techniques in diagramming naturally depends
on the target application. Constructive geometry can be highly useful in floor plans or
measurement drawings, which are more CAD-type applications. On the other hand, it is
less useful in flow diagrams where topology is of the essence, not geometry.

2.2.2 Graphical Editing Frameworks

One of the objectives of this thesis is to create a framework for creating 2D process mod-
elling and simulation result visualisation it is worthwhile taking a look at existing 2D
frameworks.

Since editing (modelling) is a key desired feature, this review also focuses on graphical
editing frameworks instead of just general graphical frameworks. Some of the things de-
sirable from such frameworks may be:

(GFP1) Scene-graph Scene-graphs are generally used for controlling the renderer data,
rendering methods and order of rendering. The concept of a scene-graph is more
familiar in the 3D rendering context.

(GFP2) Efficient painting Despite the immensely powerful graphics cards of today, it is
still beneficial with large graphical models to prune the amount of rendering via
different visibility optimizations, such as spatial subdivision.

(GFP3) Picking Picking is used for determining the set of graphical elements under your
pointing device at a given moment. Picking basically requires checking which
graphical elements either intersect with or contain a given area. Often picking tends
to be integrated into the scene-graph.

(GFP4) UI event handling and dispatching UI event handling and dispatching involves
providing support for a forwarding lower level UI events to graphical elements as
new events.

Other properties that affect the usefulness of a framework in the context of this thesis are:

Implementation Language The focus here is on Java frameworks, since that is the lan-
guage of the thesis implementation.

CHAPTER 2. TECHNOLOGY REVIEW 22

Rendering Quality High quality anti-aliased rendering and support for image space
composition (see subsection 2.2.1) are desirable features for a rendering engine.

Data Model One of the purposes of graphical editing frameworks is to provide means
for representing an underlying data model. Some frameworks are indifferent to the
data model whereas some frameworks enforce the use of their own base model.
Indifference generally leaves the user more implementation burden while enforced
models may be able to do more for the user. On the other hand, enforced models
may prove to be unsuitable for ones purposes.

The MVC architecture (Model-View-Controller) has been widely adopted as a general so-
lution for creating tools for controlling potentially large and complex data sets. The es-
sential purpose of MVC is to bridge the gap between the human user’s mental model
and the digital model that exists in the computer. The ideal MVC solution supports the
user illusion of seeing and manipulating the domain information directly. The structure
is useful if the user needs to see the same model element simultaneously in different
contexts and/or from different viewpoints. Figure 2.6 illustrates this idea. [Ree03]

Figure 2.6: The Model-View-Controller architecture.

Batik

Batik is a Java based toolkit for applications or applets that want to use images in the
Scalable Vector Graphics (SVG) format for various purposes, such as presentation, gen-
eration or manipulation. Batik features quite extensive support for the current SVG 1.1
standard and also some support for SVG 1.2 Full and Tiny drafts but these are subject to
change.

Batik uses Java2D as its rendering engine. Java2D provides a good foundation for high-
quality rendering and Porter-Duff composition, which Batik currently implements with

CHAPTER 2. TECHNOLOGY REVIEW 23

filter effects according to the SVG 1.1 standard.

Batik offers a Swing-based UI component for displaying and interacting with an SVG
document. It can also be used for rasterizing SVG without using UI components.

Batik uses the standard SVG Document Object Model (DOM) as the user interface for
feeding the rendering engine. Internally Batik converts the given DOM into its own
tree of graphics nodes, a GVT tree (Graphics Vector Toolkit), which is more suitable for
rendering and user interaction. The DOM and the GVT model are connected with a
Bridge that listenes to both models and keeps them synchronised with each other. The
DOM is a kind of scene-graph which in co-operation with the GVT tree provides fairly
good support for all features (GFP1)–(GFP4).

Figure 2.7: Updating the SVG DOM in Batik.

An example of how the DOM can be updated by the user and how the updates reflect
to the other components is shown in Figure 2.7. All updates go through the UpdateM-
anager. Its main purpose is to synchronise all DOM modifications. It runs as a separate
thread and synchronously consumes Java Runnables that perform a batch of operations
on the DOM. This circumvents the need for inefficient and complex fine-grained syn-
chronisation in every DOM operation. Each DOM modification produces mutation events
which the bridge listens to. The bridge updates the GVT model according to the received
mutation events. Finally, by listening to GVT changes, the UpdateTracker keeps track of
dirty regions that need updating. The UpdateManager uses this information to update
the user view.

In conclusion, Batik provides a way for presenting and manipulating structured vector
graphics according to the SVG standard and basic support for user interaction and pick-
ing for the graphical elements, either with JavaScript or through the SVG DOM. Just as

CHAPTER 2. TECHNOLOGY REVIEW 24

described, Batik is a toolkit that provides a basis for presenting and interacting with vector
graphics, not a framework for graphical editing.

Piccolo

Piccolo [Uni] is a toolkit that supports the development of 2D structured graphics pro-
grams with the addition of Zoomable User Interfaces, coined ZUIs. It is implemented
both in Java and C#. The idea of ZUI is to provide a framework for customized render-
ing based on the current “zoom level”, i.e. view scaling.

Piccolo provides its own 2D scene-graph consisting of nodes with rectangular bounds
through which it implements support for properties (GFP1)–(GFP4). Piccolo does not
provide an MVC framework for editing a model — it is model-agnostic and any editing
facilities are left up to the user to build.

The authors of Piccolo regard its design as being monolithic, meaning that extending it is
based on inheritance rather than composition. The approach and the reasons behind it
are described in their article on graphical toolkit design [BGM04].

GEF

The Eclipse Graphical Editing Framework (GEF) [Ecla] is an MVC framework for creating
customized graphical editors in the Eclipse RCP (Rich Client Platform) environment. The
framework is model-agnostic, i.e. it only considers the model as a Java Object and it is
up to the user to actually implement the model. The only requirement is that the model
needs to have a change notification mechanism. This makes GEF a useful candidate for
most editing scenarios. GEF provides Eclipse Workbench integration and an interaction
layer which uses the command design pattern [GHJV95] for applying user interaction to
modify the model. Despite the fact that GEF can be used to create any kind of custom
graphical editor, the basic framework provides support for placing graphical elements on
a canvas and creating connections between them. This editing pattern fits diagramming
applications quite well, such as UML editors.

GEF uses a rendering framework called Draw2D which implements a lightweight graph-
ical toolkit on top of Eclipse’s own SWT (Standard Widget Toolkit) [Eclc]. Draw2D pro-
vides a Figure abstraction for representing a hierarchy of nested rectangular areas with
customizable painting and propagating UI events to those figures in the same way as
widget toolkit propagate events to their widgets. Draw2D can be viewed as a kind of
scene-graph which provides support for all properties (GFP1)–(GFP4) listed above.

CHAPTER 2. TECHNOLOGY REVIEW 25

Recently successful attempts have been made to replace Draw2D’s SWT backend with
OpenGL [Cro07]. Performance-wise this is most intriguing and it should open up new
possibilities for 2D and 3D integration in GEF-based tools. Although not the most up-
to-date, probably the most comprehensive documentation of GEF is available as an IBM
Redbook [MDG+04].

GMF

The Eclipse Graphical Modelling Framework (GMF) [Eclb] is an extension of GEF and
Eclipse Modelling Framework (EMF). It uses GEF and Draw2D for its rendering pur-
poses, but unlike Piccolo and GEF, it is not model-agnostic but is based on the use of
EMF models.

EMF is the basis for all of the modeling tools built on top of the Model Development
Toolkit (MDT) of the Eclipse platform. It’s main contribution is a meta meta model, i.e. a
facility for defining domain-specific meta models which in turn serve as the type system
for models. The meta meta model is called Ecore. Ecore has evolved in parallel with
OMG’s Meta Object Facility (MOF) 1.4 model. It can be considered analogous to a meta-
ontology.

The fundamental idea of GMF is to bridge EMF and GEF to allow graphical editing of
Ecore domain models in a generative, model-driven fashion. The aim is that graphical
editing tools can be constructed by modelling and code generation instead of manual
programming. It also aims for reusability of graphics and tool definitions with different
domain models.

The framework consists of two main components: tooling and runtime. The tooling is the
generative part of the framework which is used by so called “toolsmiths” to model and
generate the initial tools. The generated tools are then further customised by developers.
The work of toolsmiths includes:

• modelling of a graphical definition for specifying the graphical elements used in
graphical modelling

• modelling of a tool definition model for specifying runtime options supported, such
as tool palette configuration and overview support.

• modelling of a mapping definition for binding the graphical definition elements to
the domain model elements.

CHAPTER 2. TECHNOLOGY REVIEW 26

• modelling of a generator model for describing exactly how the tool code generation
should be performed.

The runtime part of the framework consists of a set of plug-ins providing reusable com-
ponents for the graphical editors, a standardised model for describing visual properties
of diagram elements, an infrastructure for bridging EMF and GEF, and other services
extensible via Eclipse extension-points. [Art07]

In summary, GMF allows model-driven creation of graphical editing tools faster and
easier than previously by programming. Reusability of models also contributes to faster
development times. GMF is thus a very attractive alternative when working with EMF
models.

2.3 Process Modelling and Simulation

2.3.1 ISO 10628

The ISO 10628 standard [Int97] provides general rules and guidelines for the develop-
ment of flow diagrams for process plants. Flow diagrams are used in multiple areas of the
process industry, such as chemical, petrochemical, food, beverages and environmental
industries. The main objective of the standard is to simplify the creation and under-
standing by domain specialists. Some the of the standard terminology in the process
plant domain is defined in the standard. The most relevant ones are as follows:

Process: Sequence of chemical, physical or biological operations for the conversion, trans-
port or storage of material or energy.

Process step: Part of a process which is predominantly self-sufficient and consists of one
or several unit operations.

Unit Operation: Simplest operation in a process according to the theory of process tech-
nology.

Process plant: Facilities and structures necessary for performing a process.

Plant section: Part of a process plant that can, at least occasionally, be operated indepen-
dently.

Equipment: Single parts of a plant, such as vessels, columns, heat exchangers, pumps,
compressors.

CHAPTER 2. TECHNOLOGY REVIEW 27

A flow diagram is defined as a diagram representing the procedure, configuration and
function of a process plant or plant section. The standard makes a distinction between
three different types of flow diagrams depending on the level of detail of their content.
The diagram type also dictates the type of the content the diagrams shall at least contain
and also the additional information they may contain. The types are as follows from least
detailed to most detailed:

Block diagrams: A block diagram depicts a process or process plant using rectangu-
lar frames including the relevant descriptions, interconnected by flow lines. The
frames represent any of the above defined terminology and the lines may represent
streams of materials or energy flows.

Process flow diagrams (PFD): A process flow diagram depicts a process or a process
plant using graphical symbols, interconnected by flow lines. The symbols repre-
sent equipment and the lines represent flows of mass or energy or energy carriers.
These are also referred to as flowsheets. An example of a PFD can be seen further
ahead in Figure 2.9.

Piping and instrument diagrams (P&ID): The piping and instrument diagram is based
on the process flow diagram. It represents the technical realization of a process us-
ing graphical symbols for equipment and piping combined with graphical symbols
for process measurement and control functions.

Since the standard is about drawing diagrams, some rules for the actual drawing are also
laid out. These include for instance flow line thicknesses, flow line spacing, equipment
symbol dimensioning and diagram layout.

All in all, the standard and other drawing-related ISO standards serve as good guidelines
for creating standard-compliant graphical editors for the process engineer and designer.

2.3.2 ISO 10303 AP-221

ISO 10303 Application Protocol 221 [Int05b], commonly referred to as AP221, concerns
the functional and physical aspects of plant items. These aspects of a plant item are
relevant to different activities, but both aspects are described by the same documents,
e.g., P&IDs, data sheets and their electronic equivalents. The development of AP221 is
currently suspended, pending harmonization with ISO 15926.

The principal focus of AP221 is the P&ID and property information about the plant items.
The scope of AP221 includes e.g. plant system and equipment identification, connectiv-

CHAPTER 2. TECHNOLOGY REVIEW 28

ity, classification, definition of standard functional and physical classes, properties, ma-
terials and project data. [SP06]

AP221 is meant to be used in conjunction with the process plant Reference Data Library
(RDL) which is being standardised as ISO 15926 part 4 [Int05a]. The RDL is a collection
of process plant life-cycle data classes which are common to many process plants, for
example activities, equipment and materials. In other words, the RDL attempts to gather
knowledge about the functionality of process plants scattered around a large number
of international process plant related standards into one place, modelled using a single
data model (meta-model). As this single data model, the RDL uses the core data model
defined in ISO 15926 Part 2 [Int03].

The relevance of AP221 for this thesis lies mainly in carrying across the idea of “intelli-
gent plant data access”, i.e. combining schematic illustrations (diagrams) with the actual
process information models they represent. The standard generally regards all such illus-
trations as annotations of the information model. It also gives one possible view of what
kind of concepts are needed to represent piping and instrument schematics as a graph
data structure.

2.3.3 Process Simulation

Simulation in general refers to solving a mathematical model of any physical process, re-
gardless of the amount of equations or the method of solution. Another widely accepted
definition for simulation is the solution of a model of a system with a computer.

With these definitions, process simulation can be interpreted as solving a mathematical
model of a process as per the definition of subsection 2.3.1, hereafter refered to as a process
model. Another more pragmatic way of looking at process simulation is to think of it as
an experiment performed with a process model where an experiment is a test conducted
on a process model in order to answer questions about the modelled process. [BG02]

Steady-state Simulation

Steady-state is defined as a mathematical condition where the all properties of a system
are constant with time. Although this condition very rarely happens in real life, steady-
state simulation is very popular especially during the early design phases where systems
are simulated on a higher level. Steady-state simulation is often applied for calculating
mass and energy balances in chemical processes. Further applications include what-if
analysis and process optimisation.

CHAPTER 2. TECHNOLOGY REVIEW 29

Dynamic simulation

Dynamic simulation describes the time-dependent behaviour of a system. This means
that a simulation run produces a time-dependent data series instead of just producing a
single set of result values. Generally it is not applied as widely as steady-state simulation,
to some extent for the following reasons:

• Implementation of robust solvers for dynamic simulation is naturally harder than
steady-state solver implementation due to the time-depdencies.

• Computational load and engineering complexity tend to be higher. More effort
is required for setting up the model to perform correctly. For example dynamic
solvers may require the user to input dimensioning information for the simulation
to work properly which would not have been needed in corresponding steady-state
simulations.

Yet this popularity issue is not quite as black and white as these reasons suggest. It
is important to keep in mind that process simulation is an experiment — it is always
performed in order to answer questions about a process. It is these questions and pur-
poses that actually determine the needed simulations. Some questions are very high
level where not that much details about the process are needed whereas other questions
seek information about a very specific part of a process, such as the internals of a process
equipment. Either way, questions that get asked the most also require simulation the
most. [Kar07]

Optimisation

Optimisation is the mathematical process of finding such values for a set of independent
variables that minimize a real-valued objective function. The objective function deter-
mines the goal of the optimisation, which can be based on for example operating cost or
efficiency. For example optimisation methods can be applied in process plants to tuning
operation either in real-time or with a simulation model when used in conjunction with
steady-state or dynamic simulation.

CHAPTER 2. TECHNOLOGY REVIEW 30

2.3.4 Existing Tools

APROS / GRADES

APROS [VTTb] is a large-scale dynamic process simulator developed by VTT and For-
tum. Large-scale means that it is intended for simulating complete processes, such as
complete pulp and paper mills or power plants, including gas and liquid flow networks,
process automation and electrical systems.

APROS is the simulator component of the system and only has a console user interface.
APROS simulation models are configured graphically using a flowsheeting UI called
GRADES (see Figure 2.8).

Figure 2.8: Apros Grades in action.

GRADES consists of two tools: a symbol editor and a net editor. The symbol editor is
a fairly basic tool for constructing graphical composites (symbols) from graphical prim-
itives and attaching terminals to them. A single simulation component can be given
multiple different symbols. This is useful if the same simulation components are used
for different domains or if the simulation component needs to be presented at different
levels of detail.

The net editor in turn is the UI for simulation model configuration. It is used by drag-

CHAPTER 2. TECHNOLOGY REVIEW 31

ging component symbols from a palette onto the net and creating various connections
between the inserted components. A project can also contain multiple nets. In case dif-
ferent nets need to be connected together at some point, GRADES employs a “slave copy”
mechanism for doing this. It means that if a symbol S originally located on net A needs
to be connected to another symbol on net B, the user needs to make a slave copy S′ of S

onto net B. Although the mechanism itself is fairly intuitive, it has received UI criticism
about not being clear on which is the slave and which is the master [Pal07].

Simulation features are integrated into GRADES in multiple ways. First, the UI has a
run/stop/step toolbar is for controlling simulation execution. Second, in order to ac-
tually see the results of the simulation the UI has support for textual monitors and 2D
trends of single simulated values. Monitored values are shown directly on the net, while
trends are shown in separate trend windows.

BALAS

BALAS® [VTTa] is a steady-state simulation package for chemical processes with em-
phasis on pulp and paper, also developed at VTT over the last 20 years.

The BALAS® environment is made up two separate programs: a graphical process de-
sign UI, Flosheet, and the simulator control UI of BALAS®. Both components attach to a
runtime database component which is owned by the simulator UI process. The database
contains all simulation model data, including units and streams along with their names
and parameters, design functions, calculation cases and solver settings. The Database
has a DCOM interface through which external parties, such as Flosheet or Microsoft Excel
can access it.

Providing a mechanism for editing the simulation model properties is provided by the
BALAS® process. The designer UI merely receives the UI events and tells BALAS® to
show properties for a selected entity through the DCOM interface. The contents and
functionality the property dialogue boxes are declaratively defined for each type of unit
and stream in separate files.

In a more recent version, BALAS® successfully employs an existing diagram tool for
graphical process design instead of Flosheet: Microsoft Visio. Just like Flosheet, Visio is
only a used for creating a 2D visualisation along with the topology of the process to
simulate. Process component symbols are provided as Visio stencils. Therefore, unlike
GRADES, the Visio-based solution does not have a separate UI for drawing process com-
ponent symbols. An example of a Visio-based BALAS® flowsheet model is shown in

CHAPTER 2. TECHNOLOGY REVIEW 32

Figure 2.9.

Blow_cyclone

Hot_filtrate_tank

PGW _thickener

FC2

FC1

Screen _PGW

C

CC01

PGW _disk_filter

PGW _white_water

PGW _clear _filtrate_out

FC3

PGW _heat _load

C

CC02

MD1

Fresh _water _tank

FC03 Fresh _water
SD2

PM_clear _filtrate

Save _all

Wire_pit

Mixing_chest

Chemical _pulp

head _box_flow

K14

FC01 FC02
C

CC2

CCC06

Hall_air

Former

Press _section

Paper

Pressurized grinding process PGW
Grindery

Thickening Bleaching

Wire and press section

Fiber recovery

Bleaching _press

Vapour liquid separation /
Blow cyclone Solid liquid separation /

Drum filter

Flow control /
valve

Tanks / MD tank #5

Sorting / Screen #6

Fiber processing /
grinder

Solid liquid separation /
Disk filter#2

Tanks / MD tank #4

Heat exchange /
Heater /Cooler

Solid liquid separation /
Screw press #1

Flow control /
Maniflod#4

Controllers /
Consistency control

Reactors /
Perox bl . tower

Grinder Bleaching

C

CC02 MD1

Bleaching _press

split

FC_wood

Figure 2.9: An example of a simulation model created with current Balas tools. It is
very much representative of a process flow diagram (PFD).

On the visualisation front, the Visio interface supports monitoring of the simulation re-
sult values directly on the diagram through textual monitors. Another alternative is to
use the ready-made Excel link that comes with BALAS®. The link allows manipulation
of all BALAS® parameter and stream data and running any process from Excel. The ad-
vantage with Excel is that its built-in graphing features can be applied for constructing
useful process visualisations and operation UI’s. Another useful feature is the Excel-
link’s capability to take a series of input parameters for simulation and also produce a
series of results.

All in all, BALAS® is a good example of adept use of existing tools for the construction
of a simulation configuration and analysis environment. However, a more integrated
model configuration UI could provide for a more streamlined user experience and better
capabilities for simulation result visualisation.

It should be noted that in the future the work done in this thesis can serve as groundwork
for a common 2D graphics configuration environment at VTT.

CHAPTER 2. TECHNOLOGY REVIEW 33

OpenModelica / MathModelica

Modelica is a declarative programming language specification for modeling and simula-
tion of physical processes, developed by the Modelica Association [Mod, EM97]. Open-
Modelica aims to be a complete modelling, compilation and simulation environment for
Modelica, released under an open source license [Pro].

Currently a trial version of a graphical editor called MathModelica Lite, developed by
MathCore Engineering AB, is available for this environment [Mat]. The editor provides
for creating Modelica models without actually writing the program code for the model.
This is done by connecting basic graphical components, such as gain, integrator and
derivator from libraries and adjusting their parameters to form those models. These com-
posited graphical models can be parametrised and used hierarchically as a submodel in
another, more complex model. The graphical representation of the models is stored along
with the models as annotations, or typed comments, consisting of simple structured char-
acter data. MathModelica comes with a Simulation Center component which can be used
for visual simulation of the constructed models.

SmartPlant P&ID

SmartPlant P&ID [Int] (SPPID) is an intelligent P&ID plant modelling tool developed by
Intergraph Corporation. SPPID is just one of several plant modelling tools of different
disciplines in the SmartPlant product family. It is included in this study only as an exam-
ple of the current state-of-the-art in industrial P&ID modelling.

SPPID is not a simulation tool in itself, but can be interface with various process analysis
tools, such as AspenTech simulation software. One of the cornerstones of SPPID is that
produced P&IDs always stay integrated with the same underlying plant data model that
other SmartPlant family products integrate with. This means that there is ultimately a
single source of data which all tools illustrate and use to their advantage. Another prod-
uct called SmartPlant Foundation is built for serving this purpose of a single repository for
all plant data. All the tools in the family are capable of sourcing data from the founda-
tion and possibly integrating new data into it. Despite apparent implementational and
terminological differences, this integration approach of the SmartPlant product family
approach has similarities with what we hope to achieve with the ontology-based ap-
proach described in this thesis.

SPPID comes with large sets of standard symbol libraries to streamline design tasks and
facilitate reuse of earlier data and designs. SmartSketch is a 2D sketching tool for de-

CHAPTER 2. TECHNOLOGY REVIEW 34

signing new symbols among other purposes. To aid the designer, SmartSketch employs
many kinds of snapping techniques, reminiscent of constraint-based design traits made
familiar by Ivan Sutherland’s SketchPad system already in the 1960s [Sut03].

Chapter 3

Requirement analysis

3.1 User Roles

A high-level user categorisation based on [Kar02] is used in this work. Each are analysed
separately in the following sections. The users are presented in low to high level order
along with related use cases. Only use cases closely related to 2D modelling are analysed
here.

3.1.1 Kernel Developer

Kernel developers are seasoned experts on modeling and simulation and are responsible
for developing the modeling concepts and algorithms. They can be found in universities,
research institutes and research departments of companies. Their use cases are shown in
Figure 3.1.

Generally speaking, kernel developers are the users who do all the groundwork needed
for higher level users to be able to work. They are responsible for creating and maintain-
ing the base conceptualisations, i.e. ontologies for domain information models which
are extended by library developers. In the 2D graphics context they define the ontolo-
gies used for graphical illustration of the information models, which allow higher level
developers to create graphical elements as representations of domain model concepts.

In the used ontology-based environment one goal is to keep models of different ontolo-
gies as separate as possible, e.g. for better reusability of models. The separation is also
somewhat inherently assisted by the use of a binary relational graph data model. Yet,
something is needed to bind the two models together to describe how they correspond

35

CHAPTER 3. REQUIREMENT ANALYSIS 36

Kernel Developer

Create and maintain
domain ontologies

Create and maintain
graphics ontologies

Create and maintain
ontology mappings

Create and
maintain domain tools

Create and maintain
graphical editing tools

Figure 3.1: Use cases of Kernel developer.

to each other and furthermore, keep the models in synch with each other. An example
of this case is keeping a domain information model and a graphical illustration in synch.
To address this issue, kernel developers define ontology mappings. Ontology mappings
are described further in subsection 5.1.5.

Kernel developers create or customise existing user interfaces for creating domain mod-
els. They also create and customise graphical user interfaces and tools for editing the
graphical illustrations of the information models.

3.1.2 Library Developer

Library developers are domain experts who develop and maintain libraries of modeling
constructs, which can be used to build models. Both domain information and graphics
constructs need to be defined to support graphical modelling. The use cases are shown
in Figure 3.2.

Domain library developers extend the domain ontologies created by kernel developers
and other domain libraries. They define for example new process components for use
in piping design. Companies may also want to define domain concepts for their own
products.

In the flowsheet graphics context, symbol library developers use the graphical illustra-
tion ontologies and tools to define symbols. Symbols are considered two-dimensional
graphical representations that may illustrate a domain concept or a part of a domain
model. A single person may take on the tasks of both, domain library and symbol library
developer. This separation simply emphasises that they are most likely not the same

CHAPTER 3. REQUIREMENT ANALYSIS 37

Library Developer

Domain Library Developer

Symbol Library Developer

Visualisation Developer

Create and maintain
domain concept library

Create and maintain
symbol library

Add visualisation
capability to symbol

Map domain
concepts and symbols

Figure 3.2: Use cases of library developer.

person.

Visualisation developers add support for visualisation capabilities in symbols to allow
domain model information to be expressed graphically more intuitively for model con-
figurators and model users. For example the fill level of a tank or the rotation speed of
an engine could be depicted by the symbol itself in addition to seeing the values of these
properties. Symbols are generally built for use in a particular domain, which also up to
some degree dictates what kind of visualisations may be useful. The amount of useful
visualisations is somewhat dependent on both the internal and external complexity of
what is represented by the symbol. Again, a single person may be both a symbol library
and visualisation developer, which is very likely indeed.

In order to keep domain models synchronised with graphics models, the ontology map-
pings defined by kernel developers may require extra information to be defined by li-
brary developers. However, this depends on how a particular ontology mapping works.

Domain concept design is most likely to consistute the largest part of all library devel-
opment. This is because all domain concepts, such as different process components and
different products of companies, need to be defined separately whereas symbols can be
reused for many similar domain concepts. Often it is highly desirable for symbols to
have a standard look to them so that domain experts quickly associate the graphics with
particular concepts. It may also be that some library developers, such as companies, are

CHAPTER 3. REQUIREMENT ANALYSIS 38

too busy to define symbols for their products, ending up reusing standard symbols. On
the other hand it should be made possible for library developers, such as companies, to
later create fancier and visually more capable symbols specifically for their own prod-
ucts. This implies that library developers need to be able to define multiple symbols for
domain concepts and model configurators need to be able to use them interchangeably.

3.1.3 Model Configurator

Model configurators are engineers who are developing models from the building blocks
and tools created by library developers and kernel developers. Their use cases are shown
in Figure 3.3. In flowsheeting this development focuses on using the symbols and tools
provided by library and kernel developers to build diagrams that may be mapped to
domain models. Model configurators do not define ontologies nor ontology mappings.

Model Configurator

Configure domain
model graphically

Configure monitor
and trend set

Figure 3.3: Use cases of model configurator.

For the created diagrams, model configurators may configure sets of monitors and trends.
Monitors are a mechanism for graphically visualising selected values from the illustrated
information model. Trends are used for graphically viewing the history and development
of specified values.

If possible, model configurators may also want to test their models by simulating them
from time to time. In this way they also act as model users. Especially when working
with research simulators model configurators are often also model users.

There is a large amount of possible individual user groups for 2D drawing tools. These
include for example mechanical designers, piping and instrumentation designers, build-
ing designers, district heating network designers and system dynamics modellers. All
of these users need somewhat different tools to be able to configure models intuitively,
although the created graphics models may prove to be highly similar or even generalis-

CHAPTER 3. REQUIREMENT ANALYSIS 39

able.

3.1.4 Model User

Model users use existing models to acquire information using simulations or other types
of analysis. In some sense they are end-users of everything that has been created and
configured by the previous user groups.

Just as model configurators, model users are also not concerned with ontologies but use
the tools provided for them. Any tools that require programming effort are created by
kernel developers. It is also possible that some tools with simple form-type functionality
could be created simply by means of graphical modelling. In this case they could also be
created by model configurators.

As stated previously, a model configurator may often adopt the role of model user. How-
ever, there are also pure model users in the considered fields of 2D design. A common
factor for model users of all domains is that they put already configured models to use
by tuning and analysing them. It may even be that model configurators and model users
use the same tools. On the other hand the user interfaces created for model users may
also be completely customised. One example of a case for customisation are plant oper-
ators. Operators may be offered 2D views of e.g. gauges and meters for observing the
state of a process more intuitively than by using a model configurator user interface.

Chapter 4

Implementation Environment

4.1 Simantics

The required implementation environment in this thesis is Simantics which is an open
modelling and simulation environment, being developed by the Semantic Models re-
search team at VTT [oF07]. The user interface parts of Simantics, called ProConf, are built
on top of the Eclipse Rich Client Platform and Java technology. The Eclipse platform and
plug-in architecture provide a solid foundation for building well integrated extensible
applications.

The runtime system of the Eclipse platform allows dynamic loading and unloading of
so called plug-ins, which are really nothing more than a mechanism for grouping, de-
livering and managing arbitrary content. In the Eclipse environment the content often
consists of Java classes. The runtime also handles plug-in dependencies and Java class-
loader construction based on these dependencies, effectively limiting each plug-in’s Java
classpath to the paths exported by its dependencies. One of the key components of the
platform is the Extension Registry which allows plug-ins to open themselves up for ex-
tension through declaratively defined (XML) extension-points. Extensions are defined
by providing textual information, such as IDs and numbers or names of Java classes that
implement interfaces defined by the extended extension-point. This mechanism allows
contribution of Java interface implementations without imposing compile-time class de-
pendencies between the extension-point and the extension. This is very important for
dynamic extensibility. [ML05]

The idea of the Simantics environment is to serve as a platform of its own for building
integrated and collaborative tools for different kinds of modelling and simulation needs,

40

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 41

such as process modelling or mechanical modelling both in 2D and 3D. The key building-
block of the Simantics environment is its extensive use of a single unified RDF-like graph
data model. All data in that graph model is based on a proprietary base ontology devel-
oped at VTT, called Layer0. This means that ontologies created in this environment are
always based on at least the concepts defined in Layer0, just like in EMF everything is
based on the Ecore meta meta model (see subsection 2.2.2).

The core of ProConf consists of plug-ins for connecting to the data model server and an
Ontology Development Environment (ODE) for defining new ontologies and manipulat-
ing existing ones. In order to make any use of the defined ontologies, user interfaces are
needed. This requires the creation one or more Eclipse plug-ins which take advantage
of the Eclipse Workbench UI and its extension-points. Constructing UI code or any other
code based on a set of ontologies leads to having that code depend on the existance of
those ontologies in the data model at runtime. If the required ontologies have not been
imported, the code will not work. Because all ontologies defined with ODE ultimately
depend on Layer0, the data model to which ProConf connects must always contain at
least a supported version of Layer0 or otherwise no UI can function.

Using the Eclipse Workbench UI forces the use of certain UI concepts, most importantly
perspectives, views and editors. Views and editors are both mechanisms for showing UI
components (e.g. trees, lists, text areas) inside the Eclipse Workbench with slightly differ-
ent characteristics. Perspectives on the other hand can be compared to virtual desktops.
They allow the customisation of the workbench layout for different working disciplines
and workflows. All of these mechanisms are available to the user as extension-points.
For example, the creation of a new view is a matter of defining a view extension for the
org.eclipse.ui.views extension-point in a plug-in. Minimally this requires (1) an ID for the
extension, (2) a name for the extension, and (3) the fully qualified name of a class im-
plementing the interface IViewPart. For more information on these issues, see [Fou07]
or [ML05].

4.2 Layer0

As already introduced in the previous section, Layer0 is the base ontology used in Siman-
tics as the basis of modelling. It has minor similarities with RDFS/OWL but has been
developed with different requirements. It has been often asked throughout the short
history of Layer0 why OWL and RDF were not applied directly. The main reason has
been our desire to rapidly steer its development in a direction more suitable to Simantics

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 42

environment requirements. Uschold and Gruninger suggest the following for ontology
capture in section 5.2.1 of [UG96]:

Initially, do not commit to any meta-ontology. Doing so may constrain thinking and
potentially lead to inadequate or incomplete definitions.

They also state that this principle should only be applied before programming begins.
This is probably true in some cases, but the distinction becomes more blurred along with
modern agile software engineering methodologies such as extreme programming. In
these methodologies designs and implementations evolve iteratively through refactor-
ing, starting from the simplest solutions. Ontologies too need to evolve as it’s very hard
to construct ontologies that cater to all needs, even the unforeseen ones.

In the end, one of the reasons for departing from OWL boils down to the path that has
been taken in Simantics environment for triple storage and graph data access and its suit-
ability for OWL reasoning. Furthermore, the development of Simantics and ProConf has
not yet reached the point of real applicability for reasoning services. Thus no particular
attraction in embracing OWL is seen, regardless of its somewhat standard status in se-
mantic web research. There’s little sense in embracing it just because we can, not because
of real value. Another issue is that OWL is designed for the semantic web and is rooted
tightly to description logics. It emphasises the open world assumption, which implies that
lack of knowledge does not imply falsity where reasoning is concerned. Yet, in the ter-
ritory of simulation configurations the closed world assumption is more desirable because
we cannot simulate a model only by the information about things it contains, we also
have to know what it does not contain.

The following sections shed light on the basic data model of Layer0 and all the things it
contains.

4.2.1 Data Model

The data model used in the environment can be thought of as a directed graph. In this
graph the nodes have unique identifiers. For each edge an identifier is also assigned.
The identifiers assigned to the edges of the graph have a corresponding node in the
graph. Such a graph data structure can be represented by listing the set of edges be-
tween the nodes. In this case a single edge can be represented by a triple of identifiers
(start, edge, end). The nodes of the graph are called resources and represent the entities
described in the model. The edges of the graph represent relations between the resources
thus partially defining their semantics.

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 43

#graph #triple#consistsOf

#consistsOf #relation
#instanceOf

Figure 4.1: Triples in the semantic graph

Figure 4.1 models a resource with identifier #graph, which is partially defined by es-
tablishing an edge identified by #consistsOf to another resource #triple. The resource
#consistsOf is further defined by connecting it to a resource identified #relation and iden-
tifying the edge by resource #instanceOf. The identifiers here are given names only for
simplification purposes. In reality the identifiers for the nodes are used only internally
in the system. The actual textual identification of the resources requires that the graph
of resources is connected to some elements of primitive data. For this a special set of
resources called variables are introduced. For each variable an item of primitive data is
associated. The variable identification provides the type of the primitive data.

#graph #name
#hasName

#variable
#hasVariable “graph”

Figure 4.2: Primitive data associated with the graph of resources.

Figure 4.2 shows the assignment of a textual name to the resource #graph. The #graph re-
source is associated with a #name resource, which is associated with a #variable resource.
For the #variable resource the system stores a primitive text string “graph”.

Building on this model of a graph of resources and associated primitive data some mod-
eling standards need to be established. The standard concepts defined by the system are
collected in the Layer0. Semantics of the Layer0 concepts are documented and reflected
into the environment framework code. Layer0 concepts provide the most basic building
blocks for modeling in the environment.

4.2.2 Part Division

Layer0 is divided into 6 parts. The contents of these parts are listed up to a reasonable
level and Figure 4.3 shows the part dependencies. The parts that build upon the core
concepts can be considered separate ontologies. As Layer0 is still under development,

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 44

only the more clearly defined parts are elaborated on in the following.

Layer 0

Core
Concepts

Main
Concepts

Hierarchies
Modelling and

Simulation

Embedded Java

Extensions

«uses »

«uses » «uses » «uses »

«uses »

Figure 4.3: The division of Layer0 into parts and the dependencies between the parts.

Part 1: Core concepts

• Types and Instances

• Restrictions

• Relations

• Properties

• Enumerations

• Primitive Properties

• Built-in properties

• Acquires

• Linked Lists

• Views

Part 1 constitutes the core ontology that can be used to define typing systems (classifi-
cations) by three basic mechanisms: instantiation, restrictions and inheritance. Instanti-
ation is used for classification of resources. Inheritance is used for inheriting restrictions
from supertypes. Finally, restrictions are used to describe the allowed outgoing relations,
along with their multiplicities and allowed targets. Restrictions are specified for types
and they should apply for all instances of that type. Restrictions can be used to validate
models: a model is considered valid if and only if restrictions apply for all instances in
the model. These concepts are illustrated in Figure 4.4.

Also the concepts of property and relation are defined which are very fundamental types
to the system and as such carry around implicit semantics about their use — purely by

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 45

Symbol Type

Symbol

instanceOf

* Has Child

Type

instanceOf

instanceOf

Vista Symbol
instanceOf

inherits

inherits

* Has Connection Point
Proxy

Mixer Symbol

inherits

Vista Symbol Type

inherits

instanceOf

Relation Type
instanceOf

inherits

instanceOf

Consist Of

1 Has Child

0..1 Has Range

0..1 Has Domain

1 Has Name

instanceOf

Figure 4.4: An example of defining types with Layer0. Every resource is an instance of
something. Some of these instances are types, which is described by being an instance
of something that is inherited from Type. Instance Of relations classify resources into
classes of other instances, which can be types. Inherits relations are used to acquire re-
strictions from the inherited instances. Both multi-instantiation and multi-inheritance
are allowed as long as restrictions do not conflict.

specification. An example of defining relation types is shown in Figure 4.5. Primitive and
built-in properties allow the user to construct more complex composite properties out of
primitive ones and linked lists allow ordering of resources. Enumerations are considered
properties with a set of possible values. An example of defining an enumeration is shown
in Figure 4.6. Acquire is a special mechanism for acquiring relations from other resources
through specialised relations, which is basically just a mechanism on top of a primitive
graph access interface. Finally views are used for defining how to traverse the graph
model by triple rules. In the RDF world, Fresnel [BLP05] is an attempt to create a display
vocabulary for defining what to display from the graph by lenses and how to display formats
it with formats. Views also try to answer the question of “what to display”.

Part 3: Hierarchies

• Libraries

• Ontologies

• URIs

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 46

Type

instanceOf

Relation Type

instanceOf inherits instanceOf

Consist Of

0..1 Has Range

0..1 Has Domain

1 Has Name

Library Consist Of

inherits

instanceOf

: Library Consist Of

instanceOf

singleInstance

Figure 4.5: An example of defining relation types with Layer0.

Enumeration

instanceOf

* One Of

Type

instanceOf

inherits

Line Join

Bevel

instanceOf

1 Has Name

instanceOf

oneOf

Round

instanceOf

oneOf

Miter

instanceOf

oneOf

Figure 4.6: An example of defining enumerations with Layer0.

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 47

Part 3 defines types and relations to be used for creating different kinds of hierarchies
and libraries out of the graph resources.

These hierarchies are often needed for creating hierarchical representations of the things
contained, for example in an ontology.

Part 4: Modelling and Simulation

• Units and quantities

– Expressions

• Experiments

• States

Quantities and their measurement units are vital in all kinds modelling and simulation.
Modellers need to be able to define the quantities and units used in their models and also
be able to discern the same information from other models. They also enable conversions
between different units through expressions.

Experiments and states contain key concepts related to supporting the configuration and
control of collaborative and distributed simulation with multiple clients under a server.

4.3 Client-Server Model

4.3.1 ProCore

The Simantics environment consists of clients and a hierarchy of ProCore servers. The
clients can be, for example, instances of the ProConf user interface or extensions that op-
erate autonomously or by command to produce a meaningful service, either internal
or external to the environment. Together these elements form a client-server model as
shown in Figure 4.7.

Excluding the topmost root server in the hierarchy, each server has a parent server from
which it sources all graph data and allocates resource identifications for its own use.
From the point of view of the parent server, the sourcing servers act as clients. The parent
servers keep track of the data that the clients have requested, i.e. uphold a working set of
each client. Each server creates its own version history, shrinking in granularity when
walking away from the root server. Each server follows the versioning of its parent, i.e.

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 48

ProCore

ProCore

ProCore

ProConf ProConf ProConf

Extension

e .g. Simulation
 Engine

Figure 4.7: The Simantics environment consists of a hierarchy of ProCore servers and
their clients, such as instances of ProConf or for example simulation engine extensions.

the servers track their parents for committed changes. Here, the server can use client
working set information to infer which clients need to be informed of the changes and
which don’t. The servers are active in dissemination of up-to-date data to all their clients
with an open session, emphasising the system’s role in supporting active collaboration of
multiple users in a distributed environment. General version control systems are almost
always based on a pull communication model whereas this system tries to also apply a
push model to its advantage. Joining and importing data into a server hierarchy after
working outside of it is also possible via an export/import sequence.

Fully distributed peer-to-peer architecture has also been considered but is at the moment
regarded as future research topic.

4.3.2 Transactions

ProCore is essentially a triple store. It is transaction-based and versioned. Each transac-
tion effectively creates a set of changes to the graph model, called a change set. Therefore
versioning in this context roughly means that the history of change sets is recorded as
revisions and data from any given revision can be served at request. A change set consists
of three things: added triples, removed triples and changed variable values.

A session must be opened to a ProCore server in order to communicate with it. Each
client has its own session. All access to the graph data goes through read and write
transactions. There is no support in ProCore for query languages such as SPARQL, but
the graph is read inside transactions through browsing methods, as explained in subsec-
tion 2.1.6.

Looking at the ACID-properties (Atomicity, Consistency, Isolation and Durability), it can

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 49

be said that ProCore provides all but durability of transactions:

• Atomicity is provided through enforced use of read transactions and exclusive
write transactions.

• Consistency instead is not an implicit property of ProCore but can be implemented
by attaching a validator client to ProCore that monitors all write transactions and
cancels them if, for example, restrictions defined in ontologies are violated.

• Isolation is supported by the transaction model also. Intermediate transaction state
is only visible to clients that specifically request to be included in the progress of a
write transactions, such as validators.

• Durability is not provided because the implementation is not journaled, i.e. trans-
actions are not logged into persistent storage before they are actually performed for
performance priority reasons.

Multiple read transaction are allowed to take place at the same time. Instead, write trans-
actions need exclusive locking. Read transactions are necessary to guarantee that the
model is not changed while a client is performing a batch of read operations on it.

The lifecycle of a read transaction differs from a write transaction in multiple ways. Read
transactions are simply started and completed later, disregarding how the transaction
was completed whereas write transactions must always be either committed or cancelled.
Furthermore, write transactions need not be performed by a single client alone — they
are collaborative events. A write transaction basically works as follows:

1. A client starts a write transaction, an exclusive lock is acquired.

2. The server asks the clients Ci of all open sessions whether they want to participate
in the transaction.

3. If a client Ci chooses not to participate:

(a) If the transaction is canceled, nothing happens.

(b) If the transaction is committed, the client Ci will receive a change set contain-
ing the transaction changes to update itself.

4. If a client Ci chooses to participate it will get notifications about transaction changes
and also be given the chance to make its own changes.

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 50

5. The transaction will run until all participants are willing to commit to the changes
or some participant wants to cancel.

6. When the write transaction ends, the exclusive lock is released.

4.3.3 Undo

Generally undo facilities are implemented using certain recurring design patterns. These
patterns include command and memento. The command pattern is employed for describ-
ing reversible and irreversible operations that can be used to construct and walk a his-
tory of undoable commands. Memento in turn is applied for serialising and deserialising
the internal state of objects without breaking encapsulation [GHJV95], which can prove
useful with objects referenced by commands. This is also the basic approach taken in
Eclipse’s own frameworks.

Despite of this, ProConf attempts to take a different approach. In addition to having a
hierarchy of ProCore servers and ProConf clients, a similar server to ProCore is used for
facilitate undo for the user interface. This server, called UndoCore, is used for perform-
ing graph undo/redo for an instance of the ProConf user interface by utilizing its graph
model versioning features. This approach is based on the principle that all user interfaces
in ProConf should be direct illustrations of the current state of the graph model. To imple-
ment this, in principle, one only needs to source data from the graph model in addition
to listening and reacting to incoming changes. Hence, UndoCore was introduced.

There are important differences between versioning a graph data model and versioning a
bunch of documents, i.e. files. The main difference is that files are considered inherently
separate entities of data which can only be bound to each other by their content. Gener-
ally version control systems need not care about contentual dependencies between files.
Thus the versioning model of plain files is fairly simple. Instead, in the graph model, re-
sources are bound to other resources by relations directly in the data model. Versioning
this model is a bit heavier since making small changes can have highly global effects due
to the semantic implications of the changes. Large changes are naturally more prone to
cause conflicts in collaborative work. This necessitates the ability to resolve conflicting
changes made by different parties.

Contextual undo is an important feature when editing separate files in a single editor.
It would be very irritating for the user to not have separate undo histories for the open
files. One consequence of having a single UndoCore that every part of the UI is using
simultaneously, is that contextual undo becomes considerably harder to implement. For

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 51

this reason, undo in ProConf is currently not contextual. To support contextual undo,
conflict resolution needs to be resolved.

4.4 Plug-ins

Eclipse plug-ins created for the Simantics environment which access and manipulate the
graph data model are always bound to a certain ontology or a set of ontologies. Among
other data those plug-ins bundle code that operates on the graph model solely from the
point of view of the ontologies the code understands. Any such code generally works
properly only with a particular version (or versions) of the ontology that the code was
built on. The key point here is that ontologies and related code need to evolve hand in
hand. Plug-in extensibility is also very much tied to the level of the related ontologies:
the more generic the ontologies are, the more likely it is for both the ontologies and the
related code to be extended elsewhere.

4.5 Simulation

Simulation engines are generally pieces of software whose sole purpose is to take a model
as input and produce some meaningful simulation results as its output. Exactly how this
input/output process works depends on implementations.

As defined in subsection 2.3.3, an experiment is a test conducted on a process model. The
concept of experiments is adopted in ProCore as a management mechanism for running
controlled simulation sequences. Roughly speaking, an experiment consists of a model to
simulate, the state of the simulation model, a number of simulation engines and a sequence
according to which the simulation proceeds. The simulated model used to initialize the
simulation engines is called configuration data, because it is the model created and con-
figured by the modellers. The property values inside the configuration data get modified
during simulation, which is done inside the state used in the experiment. The sequence
determines which simulation engines participate in the simulation and in which order.

In the Simantics environment, simulation engines are to be connected to the environment
as separate clients, so called extensions (not related to Eclipse Extensions and Extension-
points). Simulation extensions are pieces of software dynamically managed inside an ex-
periment that can access the graph data model. Extensions are ran as separate processes
to make the environment more fault tolerant incase any extension exhibits unexpected
behaviour.

CHAPTER 4. IMPLEMENTATION ENVIRONMENT 52

Simulation engines generally need their own data structures for simulation. Therefore
the graph model offered by ProCore is used only for initialisation. To attach an exist-
ing simulator to the platform requires creating an extension that mediates data between
ProCore and the simulator.

4.6 Trending

Webmon is a web service based trending package for the Eclipse RCP developed inter-
nally at VTT. It can be used to create extensible 2D and 3D visualisations of data coming
from various extensible sources. For example one can view a 2D trend can of a single
real-valued time-dependent variable f(t), where f could be for example a pressure or
temperature value coming from a real process or a dynamic process simulator. This kind
of trending is highly useful for monitoring a process or a dynamic simulation in a more
intuitive way than just by looking at a set of numbers. Webmon could be utilized in
ProConf for exactly these purposes, especially in process flowsheet diagrams.

Chapter 5

Design

5.1 Ontologies

The next sections describe the domain ontologies developed and used in this thesis,
which are aimed for reusability. They focus on the basics of graphical and structural
modelling. More case-specific application ontologies, defined for testing graphical mod-
elling, ontology mapping and simulation are briefly covered later on in section 7.1.

5.1.1 Vector Graphics Ontology

Vector Graphics ontology is a simplified version of SVG modelled according to Layer0.

Figure 5.1 shows the inheritance hierarchy of the types defined in Vector Graphics on-
tology. A set of most useful geometric shapes have been lifted from the SVG 1.2 Tiny
candidate recommendation. In principle the general Path shape could be used to define
the basic shapes, i.e. Rectangle, Ellipse, Polygon and Polyline, but these are kept separate
mainly for preserving the implicit semantics of the shape. The shapes defined by the on-
tology are further generalised as Graphics Nodes which are structurable as scene-graphs,
essentially for defining the rendering order of the Graphics Nodes.

Vector Graphics ontology defines a fairly minimal amount of new relations — most of
them are subordinate property relations. Normal relations are only needed for represent-
ing the scene-graphs. The Has Previous Sibling and Has Next Sibling are used to give a
rendering order to sibling nodes whereas Has Child and Has Parent relations provide the
hierarchy. Figure 5.2 shows an example of a Graphics Node hierarchy using the defined
graphics nodes and relations.

53

CHAPTER 5. DESIGN 54

«inherits»

«inherits»

+Has Position [1]
+Has Size [1]
+Has Text [1]

Text Area

Graphics Node

Group

+Has Position [1]
+Has X Radius [1]
+Has Y Radius [1]

Ellipse

+Has Path Data [1]

Path

+Has Position List [1]

Polygon

+Has Position List [1]

Polyline

+Has Position [1]
+Has Size [1]
+Has X Radius [1]
+Has Y Radius [1]

Rectangle

+Has Style [0..1]
+Has Transform [0..1]

Shape

«inherits»

Layer 0::Type

Figure 5.1: The type inheritance hierarchy of the Vector Graphics ontology. The UML
generalisation arrows are used to symbolise Inherits relations. Attributes depict re-
strictions defined in the ontology. For example an ellipse is defined by a position and
two radii for both coordinate axes.

Center : Position = {-1,0}
X Radius : Double = 0.75
Y Radius : Double = 0.5

E1.1.1 : Ellipse

G1 : Group

Position : Position = {-2,-2}
Size : Size = {4,6}
X Radius : Double = 0.25
Y Radius : Double = 0.25

R1.2 : Rectangle

Position : Position = {6,-6}
Size : Size = {4,2}
Text : Text = Hi!

T1.3 : Text AreaG1.1 : Group

Center : Position = {1,0}
X Radius : Double = 0.75
Y Radius : Double = 0.5

E1.1.2 : Ellipse

Has Parent

Has Child

Has Parent

Has Child

Has Parent

Has Child

Has Parent

Has Child

Has Parent

Has Child

Has Previous Sibling

Has Next Sibling

Has Previous Sibling

Has Next Sibling

Has Previous Sibling

Has Next Sibling

Figure 5.2: An example of a Graphics Node instance hierarchy defining a simple
grouping of Ellipses, a Rectangle and a Text Area. UML attributes are used as a short
notation for the corresponding property values in the graph.

CHAPTER 5. DESIGN 55

A significantly larger amount of properties are defined for the purposes of representing
shape properties, styling and composition. Each shape needs a set of properties of vari-
ous types to define its geometry, which are shown in Figure 5.1. Styling of shapes works
according to the description of subsection 2.2.1. A Style property consists of a Stroke prop-
erty and a Fill property. Stroke defines a paint (i.e. color or gradient), opacity, width, line
join, line cap and a dashing for drawing the the outline of a particular shape. Fill simply
defines a paint, opacity and a fill rule for describing how to fill self-overlapping paths.
Any Shape can have a style property and style is inherited by child Graphics Nodes. One
more commonly used property is the Transform property. It is used to describe the posi-
tion, scale and rotation of shapes and other graphical elements as shown in Figure 5.3.

«inherits»

+Has Position [1]
+Has Pivot [1]
+Has Rotation [1]
+Has Scale [1]

Transform

+Has X [1]
+Has Y [1]

Tuple 2

Position

«inherits»

Pivot

Scale

«inherits»
«inherits»

Double

X

Y

«inherits»
«inherits»

Rotation

«inherits»

Property
«inherits» «inherits»

Figure 5.3: The type hierarchy related to the Transform property in the Vector Graph-
ics ontology. All shown elements are types, inherited from Property. Attributes depict
restrictions defined in the ontology. For example “Position [1]” states that a Transform
property instance must have one Position property.

The purpose the vector graphics ontology has not been to cover the whole SVG specifica-
tion. Instead, it has been developed with the principle of low hanging fruit in mind, i.e.
only concepts that have been easy, useful or absolutely necessary have been included at
this time.

5.1.2 Structural Modelling Ontology

The structural modelling ontology is a basis for defining models consisting of so called
structural objects, their terminals, and connections between these terminals. The ontology
supports hierarchical decomposition of models by terminal mappings between different
hierarchy levels, i.e. having entities with substructure, as is shown in Figure 5.4. Most of
the other ontologies developed during this work are in some ways based on the structural
modelling ontology.

In summary, the goal of this ontology is twofold: firstly to provide an abstraction for

CHAPTER 5. DESIGN 56

connecting entities and secondly to provide a mechanism for hierarchical decomposition
of entities.

Figure 5.4: An abstract example illustrating the use of structural modelling ontology
showing all four elements of the ontology: structural objects, terminals, terminal con-
nections and terminal mappings.

5.1.3 Flowsheet Diagramming Ontology

Flowsheet diagrams are used to describe a process for the process engineer. Most impor-
tantly flowsheet diagrams define the topology of the flowsheet rather than containing ac-
curate geometric representations. Generally flowsheets contain symbolic representations
of flowsheet elements and connections, also known as flow lines, to define the topology,
i.e. how the symbolic elements are attached to each other. With these descriptions, flow-
sheet diagrams can be seen as structural models with structural objects and terminals.

Here are the most central types of the ontology:

• A diagram is a structural object that consists of symbols and connections.

• A symbol is a structural object type that has a two-dimensional graphical represen-
tation. Symbols are instantiated as a part of diagrams. A symbol can have connec-
tion points. Graphical representations are created according to the Vector Graphics
ontology.

• A connection point is a terminal with a graphical representation.

• A connection is a structural object that creates topology between symbols by con-
necting connection points together. A connection is a network of connection branches
to enable branching of connection lines instead of always connecting two connec-
tion points. Connections also consist of connection points that need to be added
when a connection is branched.

• A connection branch is the most basic part of a connection that connects two connec-
tion points.

CHAPTER 5. DESIGN 57

Symbols and connection points need to be positioned on diagrams. The transform prop-
erty from Vector Graphics ontology is used for this purpose. Connection points are po-
sitioned relative to the symbol. Figure 5.5 shows two examples of simple diagrams with
the above entities highlighted. The reason for the possibility of more than one branches
in a connection derives from PFD’s and P&ID’s. Pipes or flows are generally represented
with lines, such as the connections discussed here. Sometimes these flowlines are split or
merged together simply by connecting lines to each other which this ontology supports
inside a single connection. It should be noted that for the user the same effect could be
produced without multi-branch connections by instantiating new symbols and connec-
tions on-demand when the user attempts to branch a connection.

Symbol

Symbol

Connection

Connection
Branch

Connection
Point

Symbol

Symbol

Symbol

Connection

Connection
Branch

Connection
Branch

Connection
Branch

Figure 5.5: The basic model of a flowsheet diagram consisting of symbols and connec-
tions (left) along with an example of a connection with multiple branches (right).

The flowsheet diagramming ontology only defines abstract symbol types which cannot
be used in diagrams. Any concrete symbols with actual graphics need to be defined in
domain-specific ontologies.

5.1.4 Domain-specific Flowsheet Diagramming Ontologies

Domain-specific flowsheet diagramming ontologies are basically about customizing the
diagram and symbol types by inheritance. Connection points also use symbols as their
graphical representation, and therefore they too can be customized in this manner. Con-
nections and connection branches can be customized by giving each their own style prop-
erties or by using a shared style. With these mechanisms, diagrams, symbols, editors, and
tools can be customized or a given domain.

As described in section 4.4, domain-specific flowsheet diagramming ontologies are to be
bundled with plug-ins that also contain the code for the customised editors and tools
using the domain-specific ontologies. The ontologies and code go pretty much hand in
hand, i.e. where one ontology extends another, the corresponding code also extends the

CHAPTER 5. DESIGN 58

other.

5.1.5 Ontology Mappings

The basic idea of ontology mapping was outlined in subsection 2.1.2. In the context
of ProConf ontology mappings are created manually by domain experts. They utilize
a simple mapping framework which allows the creation of Java code rules. Rules are
executed during write transactions when performed graph data changes match the con-
ditions specified by a rule.

Creating a mapping between two ontologies requires the creation of another, so called
mapping ontology, which need to define everything necessary to make the mapping work.
In our current cases these include:

• Specialised mapping relation types, which are used by the mapping framework to
relate mapped entities.

• Correspondences between structural objects and their terminals (see next section).

The main purpose of separate mapping ontologies is to promote the extensibility of on-
tologies as described in subsection 2.1.3. They should create a “bridge” on top of the
mapped ontologies. In other words the bridging definitions need to be kept in the map-
ping ontology and out of the mapped ontologies (see Figure 5.6). This separation of
models also bears resemblance to the approach of GMF (see subsection 2.2.2).

Structural Model Mapping Ontology

Recall that structural models consist of structural objects and their terminals. The pur-
pose of structural model mapping ontology is to provide a method for defining how the
terminals of two corresponding structural objects correspond to one another (Figure 5.7).
This is done by using a Mapping Context to bind two structural objects. To this mapping
context, multiple Terminal Mapping Contexts are attached which create a correspondence
between two terminals in the given context. Obviously this is a very simple mechanism,
only suitable for defining one-to-one correspondences between structural objects. Still,
it succeeds well in doing exactly that while at the same time keeping the mapping data
separate from the mapped ontologies. The reason for covering this ontology is in the case
created for demonstrating the results of this work. Structural type mappings are needed
for the related ontologies to perform the instance side ontology mapping.

CHAPTER 5. DESIGN 59

Upper Ontologies
Upper Ontologies

Ontology A Ontology B

A-B
Mapping Ontology

Upper Ontologies

«uses » «uses »

«uses »«uses »

«uses »

Figure 5.6: An abstract example of ontology dependencies when creating a mapping
between two ontologies, A and B. The mapping ontology creates a bridge between A
and B without imposing dependencies between them.

 in A-B mapping ontology

 in ontology B in ontology A

Structural
Object A

Structural
Object B

Mapping
Context

Terminal
Mapping
Context

Terminal
Mapping
Context

Figure 5.7: An example of mapping two structural objects. A mapping context bridges
structural objects with the correspondences of their terminals are in turn bridged by
related terminal mapping contexts.

CHAPTER 5. DESIGN 60

5.2 Symbol Design

Designing graphical symbols involves constructing a hierarchy of graphics nodes for the
symbol and adding styling properties to these nodes, according to the vector graphics
ontology. This information can be used to create a static model for the renderer. SVG ani-
mations allow the creation of timed animations, which can be used to create preset anima-
tions which should be performed automatically by the SVG rendering engine. Although
this would provide for a more dynamic rendering model, preset animations are not really
useful when animation parameters are being created by a dynamic process, such as sim-
ulation or user interaction. Therefore externally modifying the rendering model seems
to be a suitable approach for animation in these cases. SVG’s internal animation facilities
can still be utilized e.g. for viewing or exporting animations of completed simulation
runs.

5.2.1 Parametrisation

Symbol parametrisation is a mechanism for parametrising the graphics of a symbol with
a set of named parameters pi = (name, value). The purpose of the parameters is to make
the symbol animatable by animating the parameter values. Ideally the parametrisations
should be designed in such a way that the parameters correspond to some internal state
or functionality that the symbols try to express. The parametrisations should also make
it possible for the user to intuitively associate the parameter value changes with changes
in the visual appearance of the symbol.

An example is a parameter (size, 1) which could be used for scaling a symbol in a custom
way. Another example is a symbol that needs to express its internal chemical state, such
as a pH value. The pH value could be associated with a general colour parameter of the
symbol, effectively hinting the user of what is going on. An example of a tank symbol
with three parameters is shown in Figure 5.8.

Figure 5.8: An example of a tank symbol with 3 parameters: height, radius and fill
level.

CHAPTER 5. DESIGN 61

Notice that in order to visualise anything inside a domain model, values from that model
are needed. For example, a symbol does not automatically know that it is supposed to
use a pH value from this model as an input for defining its colour parameter — it has
to be told so by the visualisation developer who adds visualisation capabilities to the
symbol.

One more thing to note about this approach is that it can be used to create highly cus-
tomizable parametrisations if necessary. As noted before, the rendering model of a sym-
bol can be initialized from a hierarchy of graphics nodes with styling in the graph. In
this case the most simple way to parametrise is to map the parameter values to attributes
of the SVG rendering model elements. Yet, with this mechanism, one could dynamically
create a complex rendering model without ever creating a graphics node model in the
graph. The problem with this approach is that one cannot create relations in the graph
model to the graphics node hierarchy of the symbol since it does not exist.

5.3 Diagram Typing

Diagrams are typed in order to customize things related to them. Typing means the
creation of a new diagram type which is inherited from the base type Diagram or its
subtype. This creates a context for customization or extension. At least the following
components can benefit from the typing:

Extension points Eclipse extension points can use a diagram type URI to be associated
with it. Although there currently are no extension points which do so, several can
be devised in the future.

Editors In the Eclipse environment editors often need to be customised for specialised
inputs which in this case are different diagram types. Diagram editors are associ-
ated with a set of tools that can also be customised and extended for each diagram
type.

Symbols Symbols or symbol libraries can be attached to diagram types in order to asso-
ciate them to be usable with those particular diagram types.

Ontology mappings Ontology mappings are rules made of custom pieces of code that
transform instances of one ontology into instances of another ontology. The map-
pings do their work based on types and therefore the context created by the dia-
gram type is necessary to be able to perform the correct mappings for each diagram.

Chapter 6

Implementation

In justifying the implementation choices that have been made, it is beneficial to review
the primary objectives of this thesis, originally introduced in section 1.2. The objectives
have been rephrased to reflect the terminology used in the implementation environment.

• Define ontologies for graphics and diagrams.

• Create a framework for creating extensible graphical editors in the Simantics envi-
ronment.

• Create concrete tools for editing flowsheet-type diagrams.

• Define proof-of-concept ontology mappings between a domain-specific diagram
ontology and an information model ontology.

6.1 Ontology Design

Defining the initial graphics and diagramming ontologies served as a starting point for
the whole development process. They were vital for initiating the development of con-
crete tools. Another good reason to start off with these ontologies is that they should be
kept free of any binding to specific graphics frameworks.

The domain information ontologies were created later on as a test case for modelling
multi-phase chemical systems in pulp bleaching processes.

Work on the ontology mappings could naturally proceed only after the graphics and
domain information ontologies reached some point of stability.

62

CHAPTER 6. IMPLEMENTATION 63

6.2 Graphical Editing Framework

The design of the graphical editing framework design has been left slightly into the back-
ground although it is an important factor regarding the future of this work. In the be-
ginning of the work, the main delaying issue was the choice of the graphics framework
to be used. After that, little by little, the graphics framework has been constructed and
extracted from existing code into what is described in the following sections.

6.2.1 Supporting Technologies

Widget Toolkits

As already explained in chapter 4 the user interfaces are based on Eclipse RCP. Eclipse
natively uses a widget toolkit called SWT (Standard Widget Toolkit) for all UI purposes.
Standard Java offers the AWT (Abstract Window Toolkit) and its lightweight companion
Swing for the same purposes.

SWT differs from standard Java AWT in that it uses the native widgets in its implementa-
tion for each supported platform in an attempt to maximally preserve the native UI look
and feel that users are used to. AWT and Swing in turn strive for a unified look and feel
on every supported platform.

Another key difference between SWT and AWT is in rendering model versatility. The
Java2D API of AWT supports porter-duff image compositing (subsection 2.2.1) while
SWT does not. This heavily affects the choice of supporting graphics technologies.

The problem is that one cannot use AWT components in an SWT application completely
transparently or vice versa. SWT provides a bridging mechanism for embedding AWT
components inside an SWT widget. Performance-wise this seems to be the best solution
for integration at the moment.

One annoyance resulting from the mixed use of both toolkits is more complex synchro-
nisation. Both toolkits apply single-threaded rendering, naturally each in its own thread.
This means that the programmer needs to be careful not to introduce race conditions in
concurrent UI event handling.

CHAPTER 6. IMPLEMENTATION 64

Batik

The two most promising graphics toolkit contenders seemed to be Batik and GEF at the
moment of choice. The decision boiled down to a trade-off between two features: ren-
dering model versatility and amount of reusable framework available.

For rendering model versatility, Java2D (AWT) based Batik wins over the Draw2D (SWT)
based GEF. Lately Java2D has also seen promising developments on the hardware accel-
eration front, giving more rendering performance and enabling rather nifty 2D and 3D
graphics interoperability with OpenGL.

GEF was the strongest contender for a featureful graphical editing framework that could
be put to use in the Simantics environment. GMF was not considered an option due to
its close ties with the Ecore meta meta model. GEF has many desirable qualities such
as general maturity, good support, seamless integration with Eclipse, and naturally, the
included editing framework. The only negative thing was the fact that it is currently tied
to SWT.

In the end, despite the SWT/AWT integration burden, Batik was chosen as the toolkit for
this work. It’s backend, Java2D, was a major contributor to this decision. This means that
the a graphical editing framework needs to be created on top of the graph data model,
Java2D and Batik.

Graph Data Access

Graph data access and manipulation facilities are provided by the Simantics environ-
ment. Ultimately all graph data access by kernel developers happens through two inter-
faces called Graph and Resource. A Graph is used for getting a hold of Resource instances
which refer to a single resource in the graph. Resources are used for reading and ma-
nipulating the graph. Ontologies are used to generate so called stubs, which operate on
top of the previous interfaces and provide an easier method for manipulating the graph
as specified by ontologies. Stubs are generated based on restrictions defined for types in
ontologies.

6.2.2 Dissection of the Framework

The framework can be divided into several seemingly separate pieces, in the end forming
the basis of the editing framework.

The main goal here is to shed some light on the interfaces and vital implementations to

CHAPTER 6. IMPLEMENTATION 65

give the reader a hint of how to create graphical editors in the Simantics environment.
The framework can be separated into the following conceptual parts:

• User interface components, i.e. canvases

• Customisation of painting

• Integrating SVG into the canvas:

– for specifying a runtime graphics model, i.e. DOM

– for rendering that model

– for interacting with that model

• Interacting with the canvas (interactors, tools)

• Bringing all of this together as an editor of a single domain

Each component is briefly reviewed with accompanying UML diagrams in the following.
Note that the UML diagrams do not contain all details about available operations, only
the most relevant ones.

Canvases

One of the first things needed for graphical editing is a canvas to render on. Java2D was
decided to become the 2D rendering API in this framework. Therefore AWT components
need to be used in order to harness the performance advantage of direct rendering. Also
the canvas needs to be embedded into ProConf which is inherently an SWT application.

There are two important coordinate spaces used in this kind of rendering. The first one is
the so called user coordinate space wherein the positions and orientations of all renderable
objects are defined. User space is inherently infinite. It is limited only by the precision
and size of floating-point numbers. The other one is the device coordinate space or canvas
space. Device refers to the output medium at hand, which may be for example the display
device or a printer. In any case, during rendering the transformation from user space to
device space must be performed. It boils down to transforming an area of user space into
an area on the output device, such as a rectangular window on a display. As the device
space is used for presenting a portion of user space, it is always limited. Naturally any
concrete display device is also ultimately limited. See Figure 6.1 for an illustration of the
coordinate spaces.

CHAPTER 6. IMPLEMENTATION 66

Figure 6.1: Coordinate spaces in 2D rendering. Colored area in device space repre-
sents the display device area.

Figure 6.2 shows the interfaces used for the created canvases and other closely related lis-
tener interfaces. The purpose of the IVectorCanvas interface is to offer only the most basic
functionality, i.e. the possibility to manage painting of the canvas (IPainterManager) and
to control the user space area shown by the canvas. ISVGCanvas extends IVectorCanvas
to add support for viewing SVG.

+getHeight () : int
+getPainterManager () : IPainterManager
+getViewbox () : Rectangle 2D
+getWidth () : int
+repaint ()
+setViewbox (in box : Rectangle 2D)

«interface»
IVectorCanvas

+viewboxChanged (in event : ViewboxEvent)
+canvasResized (in event : ResizeEvent)

«interface»
CanvasChangeListener

+disposed (in canvas : IVectorCanvas)

«interface»
CanvasDisposeListener

«interface»
ISVGCanvas

«extends»

+loadingStarted ()
+loadingCompleted ()

«interface»
SVGDocumentListener

«interface»
IPainterManager

Figure 6.2: User interface canvas component interfaces.

Figure 6.3 shows the current corresponding implementations for these canvases. They
are used in the construction of graphical editors inside an Eclipse RCP application.

Customised Painting

A rendering canvas is not very useful if one cannot paint on it. Therefore the previously
introduced IVectorCanvas interface offers an IPainterManager (see Figure 6.4). This inter-
face allows the user to manage a set of IPainter instances, which can perform arbitrary
painting using Java2D’s Graphics2D API. The painters can be added to the canvas either
as underlays or overlays. The only difference between these is that underlays are applied

CHAPTER 6. IMPLEMENTATION 67

org .eclipse .swt .widgets ::Composite

SWTAWTComponent

AbstractVectorCanvas

SVGCanvas ISVGCanvas

IVectorCanvasVectorCanvas

Figure 6.3: Canvas component implementations.

before overlays.

+addPainterListener (in l : IPainterListener)
+addOverlay (in painter : IPainter)
+addUnderlay (in painter : IPainter)
+removePainterListener (in l : IPainterListener)
+removeOverlay (in painter : IPainter)
+removeUnderlay (in painter : IPainter)

«interface»
IPainterManager

+paint (in g2d : Graphics 2D)

«interface»
IPainter

1
*

+overlayAdded (in p : IPainter)
+overlayRemoved (in p : IPainter)
+underlayAdded (in p : IPainter)
+underlayRemoved (in p : IPainter)

«interface»
IPainterListener1

*

PainterManager

Figure 6.4: Canvas painting customisation interfaces.

Integrating SVG

Graphical editing frameworks are generally based on some kind of MVC architecture
as stated in subsection 2.2.2. It is very common for the view and the controller to also
have its own runtime data model. The essential idea behind integrating SVG and Batik
into this framework is to exploit Batik’s data models and interfaces (DOM, GVT) in the
implementation of the data models for the controllers and views. Figure 6.5 illustrates
the idea.

Batik is integrated into the ISVGCanvas and its implementation SVGCanvas as a paint-
ing layer between the underlays and overlays mentioned previously. Whereas the cus-
tomisable IPainter layers require programming to be customised, the SVG layer provides
a data-driven alternative for painting customisation through a well defined structure.
Batik’s own JSVGCanvas is built for showing a single SVGDocument at a time. SVGDocu-
ment is the SVG extension for the standard DOM Document interface.

CHAPTER 6. IMPLEMENTATION 68

Figure 6.5: An MVC view of the integration of SVG and Batik into the Simantics
graphical editing framework. The arrows represent program control flows between
the components.

The following abstractions were created to support this integration:

SVG Context The interfaces ISVGContext and ISVGContextProvider play a vital role in
the integration work. Essentially, ISVGContext contains a single SVGDocument.
ISVGContextProvider is used for synchronised distribution of a single SVGContext
to several parties. This is accomplished allowing interested parties to use context
change listeners (SVGContextProviderListener) to commence necessary updates at
context changes. One example of such a party is SVGCanvas. It is always initialised
by attaching to a specified ISVGContextProvider. This effectively removes the need
for separate management of the SVG context of the canvas by relying on the context
change listeners to do their job. Figure 6.6 illustrates these interfaces.

+getDocument () : SVGDocument
+getLayerManager () : ISVGLayerManager

«interface»
ISVGContext

+getContext () : ISVGContext
+setContext (in context : ISVGContext)

«interface»
ISVGContextProvider

1

1

+contextChanged (in event : SVGContextChangeEvent)

«interface»
SVGContextProviderListener

«interface»
org .w3c.dom .svg ::SVGDocument

1 1

Figure 6.6: The SVG context abstraction illustrated.

SVG Layering While IPainterManager provided a way for layering programmatically
customisable painters, SVG also inherently provides this option in a data-driven
way. SVG layering can be done simply by using non-rendering group elements

CHAPTER 6. IMPLEMENTATION 69

(<g>) as root elements of each layer. Ordering of layers is then only a matter of
ordering the group elements representing layers. The ISVGLayerManager interface
offered by ISVGContext is simply an abstraction for obtaining and controlling the
layer elements through a ISVGLayer interface. Another purpose of the manager is
to control the active SVG layer, which marks the layer used for editing at any given
moment. ISVGLayerListeners can also be attached to the ISVGLayerManager to lis-
ten to changes in the layer structure. Figure 6.7 illustrates these interfaces.

+appendLayer (in layerId : String)
+insertLayer (in layerId : String , in beforeLayer : ISVGLayer)
+removeLayer (in layer : ISVGLayer)
+getLayers () : ISVGLayer []
+getActiveLayer () : ISVGLayer
+setActiveLayer () : ISVGLayer

«interface»
ISVGLayerManager

+activeLayerChanged ()
+layerAdded ()
+layerRemoved ()
+layerReplaced ()

«interface»
ISVGLayerListener

+isVisible()
+lower()
+raise ()
+setVisible ()

«interface»
ISVGLayer

Figure 6.7: The SVG layering abstraction illustrated.

Canvas Interaction

All user interaction produces UI events that need to be interpreted as the intent of the
user. For this framework canvas interaction has been separated into two categories:
modal interactors and tools. Both are considered interactors in the sense that their pur-
pose is to react to user input.

A modal interaction is one that is started by some user input combination after which the
modal interactor will consume all user input until the end of the interaction is triggered.
They are well suited for simple interaction tasks, such as panning or zooming the current
view of the canvas.

Tools on the other hand are more closely related to edit domains and editors. An edit
domain serves the purpose of managing and distributing the state of an editor instance.
This includes the current input of the editor, i.e. the resource that is being edited, and the
currently active tool. Only one tool can be active at any moment. The main difference be-
tween tools and modal interactors is that modal interactors have input precedence over
tools once they get triggered. One final piece in the tool puzzle is the ToolDelegateLis-

CHAPTER 6. IMPLEMENTATION 70

tener which listens to the actual UI events and delegates them to the correct receiver at
all times. See Figure 6.8 for an illustration of the described components.

ToolDelegateListener

«interface»
ITool

«interface»
IModalInteractor

1*

«interface»
ICanvasInteractor

«extends»

«extends»

EditDomain

«interface»
IVectorCanvas

+active tool

11
Listens to all UI events of a
canvas and delegates them
to a modal interactor or the
active tool .

Figure 6.8: Interfaces and classes related to canvas interaction.

Editors

At this point constructing a graphical editor remains a matter of putting the introduced
pieces together. Take a canvas of your choice and possibly add decorators such as a
ruler. If using SVG, implement an SVG context provider for the editor. Create a new
EditDomain for the current editor input. Attach a ToolDelegateListener to the editor and
the EditDomain and the canvas. Finally register any necessary modal interactors and
tools.

This dissection has focused mainly on introducing interfaces. For many of these inter-
faces, abstract implementations and different helpers have been created, which are in-
tended to be extended and used instead of reimplementing the interfaces fully.

6.3 Flowsheet Editors

Two editors needed to be created for flowsheeting. The first one is a symbol editor which
is used for define symbols according to the ontologies defined in subsection 5.1.1 and
subsection 5.1.3. The second one is a diagram editor that uses defined symbols to construct
diagrams according to the ontology defined in subsection 5.1.3. Both editors have been
built on top of Eclipse APIs and the graphical editing framework components previously
described. Both editors also provide a simple zoom-level adaptive grid which can be
used for grid snapping in editing activities.

As described in section 4.1 using the Eclipse Workbench UI forces the use of certain UI
concepts. The flowsheet tools have been implemented as editor extensions along with
multiple view extensions to support them. Separate perspective extensions have been
created for both symbol and diagram modelling tools in an attempt to support more

CHAPTER 6. IMPLEMENTATION 71

natural user workflow.

6.3.1 Symbol Editor

The purpose of the symbol editor is to support use cases of library developers, particu-
larly the symbol library and visualisation developers. Basically symbol editing is about
constructing and manipulating a hierarchy of graphical primitives to become an illus-
tration of something that needs to be represented in 2D, such as process components.
The editor is uses for editing a single symbol at a time. The tasks of creating and manag-
ing libraries of symbols are supported by ProConf’s ontology development environment.
Figure 6.9 shows an example of the symbol editing environment.

Figure 6.9: Washer process component symbol editing with the symbol editor. On the
left is the Ontology Explorer tree view used for library creation and management. In
the middle is the symbol editor along with an outline view of the editor contents on
the right. At the bottom is the property view for editing different properties of the
current selection.

Defining Graphics

Ideally defining graphics for symbols should closely resemble the use of a quality vector
graphics editor. The user should be able to define and composite graphical primitives
graphically, without worrying about the details of how these primitives are actually de-
fined. Realistically speaking, creating such an editor is no small task.

CHAPTER 6. IMPLEMENTATION 72

The current implementation is still in its infancy but can nevertheless be used for con-
structing hierarchies of graphics nodes. Graphical primitives can be transformed graph-
ically and their style properties can be edited via property views. The lack of graphical
primitive specific editing tools is probably the biggest weakness at the moment. Because
of this the symbol developer often has to resort to using the ontology explorer tree to edit
the properties of the graphical primitives to construct the graphics. The styling properties
of graphical primitives can be edited with special property views as seen in Figure 6.9.

Composition of Graphics

In this work image space composition of graphical primitives has been considered useful
for creating good looking and intuitive visualisations for symbols. Most importantly, it
allows clipping the rendering of any graphical element to any other graphical element,
regardless the geometric complexity of the graphical elements. The performance of com-
position should only depend on the amount of image space covered by the rendered
output. Sadly, although Batik was tested to support the necessary mechanisms, there
was no time to implement these features.

Symbol Parametrization

Symbol parameterisation is implemented by associating Java code to a symbol that per-
forms the mapping from its named parameters to the graphics nodes of the rendering
model. The implementation takes advantage of the JDT (Java Development Tools) bun-
dled with the Eclipse SDK to facilitate user friendly Java code editing.

In this implementationm symbol parametrisation has been seen as a mechanism for sup-
porting the definition of visualisation capabilities for symbols. The idea is simple and
seemingly powerful but there are difficulties involved. The main challenges lie in sup-
porting simultaneous programmability and graphical editing of the symbols. If the visu-
alisation developer is allowed completely unrestricted programmability in parametrisa-
tion, it can become very difficult to support graphical editing. These challenges are highly
analogous to the ones encountered in existing UI design software where a designer uses
graphical tools to define UI layout and programming tools to define UI functionality
simultaneously. The problems arise from the fact that both tools edit the same model,
i.e. the code that constructs the UI. Typically, when the UI code gets more complex or
no longer conforms to the format automatically constructed by the graphical tools, the
graphical tools stop working properly.

CHAPTER 6. IMPLEMENTATION 73

6.3.2 Diagram Editor

The implemented diagram editor supports the general editing traits of diagram mod-
els constructed according to the flowsheet diagramming ontology introduced in subsec-
tion 5.1.3.

The diagram editor allows adding symbols on a diagram by instantiating them. Symbols
can also be removed in which case any connections attached to the connection points
of the removed symbol are detached. Symbols can be graphically positioned and ori-
ented on the diagram. Connections can be added by drawing a continuous line segment
between two connection points, i.e. terminals. Only single-branch connections are sup-
ported since multi-branches connections were not a top priority feature and would have
only introduced unnecessary complexity. Connections can also be removed which de-
taches possible terminal connections at both ends. Connections can currently only be
manipulated by editing the segmentation and the corner points of a connection line.
Detaching and reattaching existing connections is not supported although it would be
useful. At the moment changing connecting connectivity implies removing the original
connection and adding a new one. Figure 6.10 shows an example diagram constructed
with the these tools.

Figure 6.10: The internals of a washer created with the diagram editor.

Configuring a Domain Model Graphically

As gathered in subsection 5.1.5, a central idea in this environment is that the logic of
configuring domain models graphically should not be coupled to the user interface code.
Instead, the logic should be implemented in ontology mappings, effectively bridging
the graphics and domain models. In this implementation and the chemical multiphase
modelling test case this objective was achieved. The graphical modelling tools are being
used unmodified, with the exception of adding a button for enabling the mapping. After

CHAPTER 6. IMPLEMENTATION 74

that the topology of the domain model is configured along with the graphical diagram
model. Figure 6.11 shows an example of the model configuration user interface built for
the proof-of-concept mapping case.

Figure 6.11: Editing a bleaching process diagram with an application specific diagram
editor. Two tree views on the left are showing structure of both the domain model
(top) and the diagram model (bottom). The symbol library view at the bottom is used
by the modeller to add new symbols to the diagram.

Configuring Monitors and Trends

Monitors and trends are important features for supporting graphical visualisation of sim-
ulation results. Sadly support for these features was not finished in time to be included
in this thesis work.

Textual monitors could have been easily implemented using symbol parametrisation and
text flow functionality provided by Batik. Unfortunately these text facilities were discov-
ered too late in the development process.

Chapter 7

Results and Evaluation

Looking back to the beginning of this work, the main set objectives can still be considered
realistically implementable in the given timeframe. In the end, most goals were achieved
up to a certain level and some were left as future research. In the following sections,
the different aspects of this work are evaluated and criticised by subjective assessment of
the author and with regard to requirements and viability for real-world applications. In
section 7.1 the results are evaluated from the point of view of the implemented modelling
case. In section 7.2 the created domain ontologies are analysed from a more general point
of view. Finally section 7.3 briefly analyses the ontology-based modelling approach as a
whole.

7.1 CASE: Flowsheet modelling of a multi-phase chemical pro-
cess

The implemented tools and mapping mechanisms were put to the test in a proof-of-
concept use case involving modelling and simulation of a pulp bleaching process using
structural modelling methods, including hierarchical decomposition. Pulp bleaching is a
part of a fiber line in pulp mills. Its purpose is to improve the brightness and cleanliness
of the pulp by removing residual lignin from it. The case involved integrating an in-
house steady-state simulator which includes balancing both mass flow and multi-phase
chemical state, developed as part of a project called Vista [BLH+]. This simulation engine
was integrated into the Simantics environment as an extension client.

The test case required the definition of multiple ontologies for specifying the symbols
used for diagramming, the simulator domain model and the mapping between these

75

CHAPTER 7. RESULTS AND EVALUATION 76

two. These ontologies are considered application ontologies and are thus not defined
with reusability in mind.

Vista Diagramming ontology is extended from the Flowsheet Diagramming ontology
to contain the diagramming-related customisations required for the case. It in-
cludes the Vista Diagram type for allowing UI customisation based on the dia-
gram type and all the needed symbols, such as Mixer, Splitter, Washer and Bleacher.
Some of these symbols can be seen in Figures 6.9, 6.10 and 6.11.

Flowsheet ontology contains base concepts for modelling flowsheets consisting of flow-
sheet objects, such as units, their terminals, and streams which are used to connect
the units by their terminals. These concepts are extended from structural modelling
ontology.

Multi-phase Chemistry ontology defines the basic properties related to describing multi-
phase chemical state. A Multi-phase System consists of several phases which in turn
consist of several species, i.e. the components of matter in a particular phase.

Vista ontology brings the flowsheet and multi-phase chemistry ontologies together to
define the simulation model concepts corresponding to the created symbols, i.e.
Mixer, Splitter, Washer, and so on. These are the concepts based on which the sim-
ulation engine builds its internal calculation structures. The ontology also defines
additional phases and species for a case-specific Vista Multi-phase System property
type.

Vista Mapping ontology As specified in subsection 5.1.5, this ontology bridges the Vista
Diagramming ontology and the Vista ontology to enable graphical modelling of
Vista simulation models.

For modelling and the involved ontology mapping, this approach can be said to work
as planned. The only mandatory customisation for the diagram editor was a mech-
anism (i.e. a button) for enabling the ontology mapping for an edited diagram. The
customised code for performing the mapping was not implemented rigorously and com-
pletely enough to be able to keep the simulation model in sync with the graphics at all
times. Another thing to note is that these mappings are not bidirectional as there was no
real need for that with these ontologies. Anyhow, these deficiencies are mostly due to
programmer sloppiness, not the mapping mechanism itself.

Another addition to the diagram editor was the ability to show the properties of the
simulation model from the diagram. All the Vista simulation model properties are con-
tained in the streams that connect the flowsheet objects. Since diagram connections were

CHAPTER 7. RESULTS AND EVALUATION 77

mapped to these streams, the simulation model properties can easily be shown in an
Ontology Explorer tree by selecting a particular connection on a diagram.

The biggest problems with this particular mapping implementation are concerned with
model reuse and scalability. Model reuse comes into play along with hierarchical mod-
elling. In this test case, the bleaching process was modelled on two levels: the top
level, i.e. the bleaching process, and the lower level, i.e. the internals of a Washer and a
Bleacher. For example, a bottom-up modelling process should work as follows:

1. The model configurator creates a new diagram, Washer, and enables mapping. He
uses the Splitter, Mixer and Input/Output symbols to construct the internals of a
Washer as to form what is shown in Figure 6.10. The Washer diagram therefore
contains both, the diagram model and the mapped simulation model.

2. The model configurator makes this diagram a possible subdiagram of the Washer
symbol which is shown in Figure 6.9. This allows the modeller to use the single
Washer symbol as an abstraction for the whole underlying washer model. Another
way to think of this situation is to consider the Washer internals diagram as a type
and instances of the Washer symbol as an instance of that type — as if one possible
template was given for the Washer.

3. The model configurator creates a new diagram and enables mapping for it. He
adds a Washer symbol onto that diagram. This is where the hierachical modelling
comes into play and there are several alternatives for what can happen. The most
ideal scenario would seem to be having copy-on-write semantics for this shared
diagram. This means that at first all Washer symbol instances should share the
washer’s internal structure, i.e. the diagram and the mapped simulation model. If
that shared diagram is modified, all symbol instances sharing it are affected. At
some point a configurator may want to customise the internal structure of a certain
Washer symbol instance. This implies that the system cannot modify the shared
version of the Washer internals diagram, but a copy has to be made to which the
modifications should be made.

However, reality is more complicated than the above. Although the underlying Washer
diagram model could in principle be shared among multiple Washer symbol instances,
the mapped simulation model cannot be shared. This is because from point of view of the
simulation engine, the property values of the internal simulation model of each Washer
need to be separate although the simulation model topology can remain the same. Sadly,

CHAPTER 7. RESULTS AND EVALUATION 78

achieving this with the current modelling conventions is rather difficult. So far no real so-
lution for this has been devised. The only thing that could be done within the timeframe
of this thesis was to resort to cloning everything, immediately when a new symbol with
substructure is instantiated. An obvious drawback is that massive amounts of triples get
generated very quickly. Another one is that editing of shared substructure diagrams is
not possible.

Although support for generating the simulation model through mappings was achieved
and the simulation engine was integrated, integrating the simulation results back to the
diagram model for visualisation purposes was left as future work. Therefore the visual-
isation developer’s use case of defining “visualisation capabilities” by mapping simula-
tion model property values back to symbol parameters is not supported.

7.1.1 Scalability

Scalability problems in mapping-enabled diagram modelling arise from the very large
number of triples generated already with very small models. There are multiple under-
lying reasons for this bloating behaviour. The first one is of course the cloning mechanism
described above, which creates massive amounts of data by doing theoretically unneces-
sary cloning purely for making the mapping implementation easier. The other reasons for
bloat are ontology-related. Currently the definitions of certain property types in certain
ontologies generate most of the triples both in the diagram and the simulation model.
Recall that the Vista ontology contained the “Vista Multi-phase System” property type.
It describes a case-specific chemical state as a composite property with three phases and
several species in each phase, which makes instances of this property type very large. Its
instances contribute to approximately 90 − 95% of all data in the simulation model. The
other bloating culprit is the Transform property defined by the Vector Graphics ontology.
A more detailed and precise analysis of it is presented in section 7.2. Table 7.1 shows
the amount of triples generated by modelling the internal Washer structure diagram and
also the amount of triples generated by the bleaching process diagram and simulation
model. The simulation model seems to be taking almost 80% of the whole triple mass.
Combining this observation with the 90 − 95% property percentage above shows that
over 70% of the whole data mass is in the simulation model property structures. Empha-
sising that the case model is still really small, this is a clear indication that optimisation
work remains to be done.

Since the simulation result visualisation use cases were not implemented, it’s hard to say
anything conclusive about the real-time visualisation performance of the diagramming

CHAPTER 7. RESULTS AND EVALUATION 79

Table 7.1: The amount of triples and literals created during mapping-enabled dia-
gramming.

Model # Triples # Literals

Washer simulation model 13525 (79%) 1923 (78%)

Washer diagram model 3501 (21%) 537 (22%)

Washer total 17026 2460

Whole Bleaching Process model 83837 12198

framework or the viability of the symbol parametrisation mechanism.

7.1.2 Usability

The importance of usability and good looks of the graphical editing tools cannot be un-
derestimated. As already stated in subsection 6.3.1 the symbol editor is far from real-
world usability, mainly because the integration of parametrisation into symbol modelling
was more difficult than was originally anticipated. The diagram editor in turn is most
importantly missing different kinds of snapping mechanisms, such as ruler guidelines or
geometry-based snapping. The connection manipulation mechanisms could really use
different kinds of auto-routing facilities to streamline the editing process.

7.1.3 Case Conclusions

Based on the previous evidence, this implementation as such is not really viable for real-
world use. The positive thing is that the ontology mapping does its job pretty much as
planned while remaining transparent to the user although UI usability can still be greatly
improved. There are multiple areas of improvement with regard to do with making the
produced models more compact. Firstly, the related ontologies need to lose some weight.
Secondly, the mechanisms and methods for hierarchical modelling must be developed
further to enable better reuse of models. Finally, mechanisms and methods for allowing
sharing of simulation model topology are key to this desired weight loss.

CHAPTER 7. RESULTS AND EVALUATION 80

7.2 Ontologies

The ontologies used in this thesis have been mostly defined with the principle of low-
hanging fruit in mind. This means attention has been paid to defining only concepts that
have been mandatory for satisfying requirements or easy to include.

Referring to principles defined in subsection 2.1.3, it can be said that all ontologies created
in the Simantics environment contain a certain amount of encoding bias. This bias orig-
inates from the way the environment handles identification of resources and also from
the way Layer0 ontology is defined. At this point it is unclear whether our ontologies are
representable in OWL for example, without any modification of semantics.

Naturally bad naming decreases ontology clarity, but currently the largest clarity issues
in the created ontologies arise from the lack of attached documentation. Currently there
is not enough natural language documentation to allow an outsider to easily comprehend
the ontologies. One important deficiency in the current ProConf version is that even if
this documentation is available, it is not utilised at all. Granted, adding documentation
to ontology entities as Layer0 Comment properties does not currently require too much
effort. However this documentation could be made accessible in more immediate ways
than by opening an editor, such as tooltips and descriptive text boxes in selection dia-
logue boxes. Although this criticism mainly concerns ODE, it applies for other UI’s also.
A major point in having a versatile expressive information model is being able to asso-
ciate and access useful information where it is needed.

The extendibility of ontologies is worth considering for at least the Vector Graphics (VG)
and Flowsheet Diagramming ontologies (FD). Since VG is a fairly straight-forward ontol-
ogy which merely defines different 2D shapes and depends on no other ontologies, there
are very few hindrances to its extendibility. Instead the FD ontology contains some clear
flaws due to the legacy reasons. Originally these two ontologies were one and the same,
until they were sliced in two along with the realisation that vector graphics definition and
diagram definition can be considered separate problems. The main flaw is that currently
the FD ontology is bound to using nothing else but the VG ontology. This is because VG
ontology concepts are specifically defined to be used for defining symbol level matters,
more precisely connection points of symbols. There are alternatives which do not include
this particular coupling, thus allowing FD ontology to use alternative forms of graphical
definition for symbols and connection points besides VG. Extendibility is only hindered
incase a person extending FD cannot use VG, so the issue is not really that big. Besides
extendibility, the issue is also related to minimising ontological commitment.

CHAPTER 7. RESULTS AND EVALUATION 81

Generally speaking, minimising ontological commitment is more important when deal-
ing with domain ontologies or general ontologies. Instead, application ontologies are
by nature more customised for a particular purpose and are likely to contain more strict
commitments. The domain ontologies presented in chapter 5 fare quite well in this sense.

7.2.1 Scalability

It is natural for the triple-based graph data model to produce more data than normal
rigidly structured data models. Complete data structures consist of large amounts of
triples that need to be interpreted instead of having a single block of memory carry the
information of that data structure. This is why care needs to be taken not to make ontolo-
gies more complex than necessary.

The scalability of diagramming and vector graphics ontologies can generally be consid-
ered fairly good, except for one poor devil: the Transform property of the Vector Graphics
ontology. It is not a very complex property per se, it just combines the basic 2D transfor-
mations, i.e. translation, rotation with a pivot point and scaling into a composite prop-
erty. It does so by defining each of these properties separately to preserve the semantics
and values of each transformation type instead of just combining them all using a 3 × 2
affine transformation matrix. This preservation also allows changing the preferred order
of the primitive transformations, if necessary.

: Transform

: Position

: Pivot

: Rotation

: Scale

: X

: Y

: X

: Y

: X

: Y

Has Position

Property Of

0.0

0.0

0.0

0.0

1.0

1.0

0.0

Has X

Has Y

Has X

Has Y

Has X

Has Y

Has Variable

Has Variable

Has Variable

Has Variable

Has Variable

Has Variable

Has Variable

Has Pivot

Property Of

Has Rotation

Property Of

Has Scale

Property Of

Property Of

Property Of

Property Of

Property Of

Property Of

Property Of

...

Property Of

Has Transform

Figure 7.1: The amount of triples and literals produced by a single Transform property
instance illustrated.

CHAPTER 7. RESULTS AND EVALUATION 82

Table 7.2: The transform properties’ percentage share of the triples and literals gener-
ated by instantiating symbols containing different amounts of connection points.

Ncp(s) Np(s) T (s) L(s) Ttr(s) Ltr(s) p(Ttr(s)
T(s)) p(Ltr(s)

L(s))

1 1 95 16 80 14 84% 88%

2 1 139 23 120 21 86% 91%

3 1 183 30 160 28 87% 93%

4 1 227 37 200 35 88% 95%

Figure 7.1 shows what a Transform property looks like as triples and literals. The image
does not show the Instance Of relations attached to each of the resources labeled with
a leading ’:’. By counting these in we find that a single transform property takes a total
of 38 triples and 7 literals (variables) to express plus two triples to attach the transform
property to another resource. Comparing this with a normal programming language
representation which would require a mere 7 ∗ 8 = 56 bytes to represent in double-
precision floating-point numbers, the amount of data in the graph is greater by over an
order of magnitude.

By extending this analysis into the diagramming ontology, where the Transform property
is used extensively for positioning symbols and connection points, we discover that:

T (s) = 47 + 44Ncp(s) + 4Np(s),

L(s) = 1 + 7(1 + Ncp(s)) + Np(s),

Ttr(s) = 40(1 + Ncp(s)),

Ltr(s) = 7(1 + Ncp(s)),

where T (s) is the amount of triples and L(s) the amount of literals it takes to represent
symbol s. Ttr(s) and Ltr(s) represent the amount of triples and literals needed by the
transform properties in symbol s. Ncp(s) and Np(s) are the amounts of connection points
and parameters in the symbol respectively. Table 7.2 shows that the transform properties
own a major part of the generated data — over 80% and only grows by increasing by the
amount of connection points.

There are multiple ways to reduce this bloat. The first, and also the easiest alternative
would be to change the Vector Graphics ontology to allow the different transform parts
to exist only if necessary (multiplicity [0..1]) instead of requiring that a position, scale,
rotation and pivot always exist (multiplicity 1). Another way would be to take out the

CHAPTER 7. RESULTS AND EVALUATION 83

semantics from the transform property and just model it as a double vector of size 3·2 = 6
to store an affine transform matrix. Yet another way is to again model the property as a
vector of size 7 and store the translation, rotation, pivot, and scale in some agreed and
documented order. One deficiency with the former two approaches is that they make it
impossible to create more references to the translation, scale, and other properties from
outside of the property hierarchy shown in Figure 7.1. Then again, by using a simple
value vector, the amount of triples and literals would be greatly reduced.

7.3 Ontology-based Modelling and Mapping

The taken ontology-based modelling approach, i.e. the graph data model along with
the modelling semantics of Layer0 allows us to describe data in unprecedented ways.
Layer0 defines basic law and order into the otherwise structureless graph by specifying
the most basic modelling conventions. Being able to relate data (resources) to other data
in unlimited ways is really a great source of expressive power despite of the simplicity of
the underlying mechanism (triples).

The basic idea of this ontology-based approach is much the same as in Eclipse’s EMF-
based modelling toolkits: a model-driven approach where everything, starting from your
own ontologies (meta models), should be done in a modelling-supported fashion instead
of pure programming. The model-driven approach allows support for model validation,
supporting ontology-based code generation for model processing, and automated gen-
eration of user interfaces based on the semantics of ontologies. Most importantly the
employed graph data model allows us to do all modelling of different disciplines in a
single environment. The key distinctive features of the Simantics environment are its
support for versioning of the graph model and its focus on real-time data support, such
as simulation results or real process data.

Being ontology-based is not something that is or should be somehow immediately ap-
parent to the user. The only difference is that if the model is put to proper use, one can
have versatile linkedness between different data models. The user-visible differences or
even enhancements only become apparent when the user interfaces also truly embrace
this data model.

As already stated, we were able to reach the original goal of getting a proof-of-concept
mapping implementation to work. In the future, the main goal will be figuring out ways
to make ontology mapping both easier and more robust by adding syntactic sugar and
helping user interfaces. Syntactic sugar could be added by raising the level of expres-

CHAPTER 7. RESULTS AND EVALUATION 84

sion out of Java code into something more high-level, possibly a Prolog-style declarative
form or even into a specially crafted UI. The current Java code mechanism seems too
complicated for just any kernel developer to be able to comprehend and hold together.

Another area of examination in the future could be spatio-temporal diagramming, which
basically means adding a time-interval of existence into every aspect of diagram mod-
elling. This might prove highly useful in any modelling cases where lifetime issues need
to be considered, such as construction planning or district heating network simulation
over long time periods.

Chapter 8

Conclusions

Currently, in many cases process modelling and simulation still tend to be rather sepa-
rate modelling disciplines. Semantic integration research is looking for mechanisms to
map models of different domains in both manual and (semi-)automatic fashion but so
far no silver bullet has been discovered. An extreme example of bad data integration is
that often simulation models are manually recreated for simulation software based on
printouts of original designs.

Real-world process design most often involves drawing 2D diagrams, such as P&IDs to
illustrate the process. Computer-assisted diagramming is nothing new under the sun —
it has been done for ages already. Also several intelligent design systems are available
nowadays, which combine different assets into a unified design model, such as diagrams,
geometric 3D models or other documents. This is also nothing new.

The fundamental idea behind the Simantics environment is creating a framework for
the integration of multiple modelling disciplines with a clear focus on real-time data
and simulation support. The desire is to have diagramming tools specifically crafted
for this architecture and the graph data model, without external sanctions or unwanted
compromise. Especially important is the utopia of behaving diagrams which we hope to
achieve in a natural way through real-time data support and symbol parametrisation. So
far the use of visualisation in 2D process simulation has mostly involved use of textual
monitors and trends of selected values. The symbol parametrisation mechanisms created
in this thesis provide groundwork for more advanced visualisation.

The unified data representation and modelling scheme along with the capability for free
association of information can be considered the greatest virtues of the ontology-based
graph data model approach. The graph model is a very fine-grained way of representing

85

CHAPTER 8. CONCLUSIONS 86

information and therefore also inevitably more computationally intensive than regular
more coarse-grained models. However, with scalable and optimised architectural data
storage solutions and careful ontology modelling, the graph-based ontology approach
seems feasible for real-world applications.

Bibliography

[Ado98] Adobe Systems Incorporated et al. Precision Graphics Markup Language
(PGML), April 1998. http://www.w3.org/TR/1998/NOTE-PGML. Last checked
2007-02-27.

[Art07] Artem Tikhomirov and Alexander Shatalin. GMF Best Practices. EclipseCon
2007, March 2007. Available at http://www.eclipsecon.org/2007/index.php?
page=sub/&id=3739. Last checked 2007-05-01.

[Aut98] Auto-trol Technology. CGM: A Non-Proprietary, Editable 2D Graphics For-
mat That Handles Vector, Raster, and Text Data. Engineering Automation Re-
port, 7(8), August 1998. Available at http://www.tech-illustrator.com/TI/

Articles/ear_cgm.pdf. Last checked 2007-03-08.

[BG02] Bertrand Braunschweig and Rafiqul Gani, editors. Software Architectures and
Tools for Computer Aided Process Engineering, 11, volume 11 of Computer-Aided
Chemical Engineeirng. Elsevier, first edition, 2002. ISBN 0-444-50827-9.

[BGM04] Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer. Toolkit design for inter-
active structured graphics. IEEE Transactions on Software Engineering, 30(8):535–
546, 2004.

[BLH+] Anders Brink, Daniel Lindberg, Mikko Hupa, Timo Fabritius, Jaana riipi,
Jouko Härkki, Ari Kankkunen, Mika Järvinen, Carl-Johan Fogelholm, Seppo
Louhenkilpi, Shenqiang Wang, Petteri Kangas, Pertti Koukkari, Reijo Lilja,
Risto Pajarre, Karri Penttilä, Fredrik Bergström, and Kenneth Eriksson. Multi-
phase Chemistry in Process Simulation (MASIT04 (VISTA)). MASI Technology
Programme 2005-2009, Yearbook 2007. Technology Review xxx/2007. Tekes. To
be published.

87

http://www.w3.org/TR/1998/NOTE-PGML
http://www.eclipsecon.org/2007/index.php?page=sub/&id=3739
http://www.eclipsecon.org/2007/index.php?page=sub/&id=3739
http://www.tech-illustrator.com/TI/Articles/ear_cgm.pdf
http://www.tech-illustrator.com/TI/Articles/ear_cgm.pdf

BIBLIOGRAPHY 88

[BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative
analysis of methodologies for database schema integration. ACM Comput.
Surv., 18(4):323–364, 1986.

[BLP05] Chris Bizer, Ryan Lee, and Emmanuel Pietriga. Fresnel - Display Vocabulary
for RDF, April 2005. http://www.w3.org/2005/04/fresnel-info/. Last checked
2007-03-22.

[Bun97] Peter Buneman. Semistructured Data. In PODS ’97: Proceedings of the six-
teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database sys-
tems, pages 117–121, New York, NY, USA, 1997. ACM Press.

[Car] carto.net — Cartographers on the net. http://www.carto.net/. Last checked
2007-05-02.

[Cro07] Thomas Crockett. GL2D: Overhauling Draw2D’s graphics engine with
OpenGL, March 2007. http://www.eclipsecon.org/2007/index.php?page=

sub/&id=4138, presentation material not available. Last checked 2007-05-01.

[CS04] Ida K.L. Cheung and Geoffrey Y.K. Shea. Visualizing and Editing GIS data with
SVG for Internet and Mobile Users. In SVG Open 2004, 3rd Annual Conference
on Scalable Vector Graphics, September 2004. Available at http://www.svgopen.
org/2004/papers/VisualizingEditingGISdatawithSVG/. Last checked 2007-05-
02.

[DH05] AnHai Doan and Alon Y. Halevy. Semantic integration research in the database
community: A brief survey. AI Magazine, 26(1):83–94, 2005.

[DHH02] David Duce, Ivan Herman, and Bob Hopgood. Web 2D Graphics File Formats.
Computer Graphics Forum, 21(1):43–64, 2002.

[ea97] Serge Abiteboul et al. Querying Semi-Structured Data. Proceedings of the 6th
International Conference on Database Theory, pages 1–18, 1997.

[ea98] Tim Berners-Lee et al. Uniform Resource Identifiers (URI): Generic Syntax.
Request for Comments, August 1998. http://www.ietf.org/rfc/rfc2396.txt.
Last checked 2007-02-15.

[Ecla] Eclipse Foundation. Graphical Editing Framework (GEF).
http://www.eclipse.org/gef/. Last checked 2007-02-26.

[Eclb] Eclipse Foundation. Graphical Modeling Framework (GMF).
http://www.eclipse.org/gmf/. Last checked 2007-02-26.

http://www.w3.org/2005/04/fresnel-info/
http://www.carto.net/
http://www.eclipsecon.org/2007/index.php?page=sub/&id=4138
http://www.eclipsecon.org/2007/index.php?page=sub/&id=4138
http://www.svgopen.org/2004/papers/VisualizingEditingGISdatawithSVG/
http://www.svgopen.org/2004/papers/VisualizingEditingGISdatawithSVG/
http://www.ietf.org/rfc/rfc2396.txt
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/

BIBLIOGRAPHY 89

[Eclc] Eclipse Foundation. SWT: The Standard Widget Toolkit.
http://www.eclipse.org/swt/. Last checked 2007-02-27.

[EM97] Hilding Elmqvist and Sven Erik Mattsson. An Introduction to the Physi-
cal Modeling Language Modelica. In Proceedings of the 9th European Simula-
tion Symposium, ESS’97, October 1997. Available at http://www.modelica.org/
publications/papers/ESS97Modelica.pdf. Last checked 2007-05-03.

[Flo03] Luciano Floridi, editor. Blackwell Guide to the Philosophy of Computing and In-
formation, chapter Ontology by Barry Smith (preprint version), pages 155–166.
Oxford: Blackwell, 2003. Available at http://ontology.buffalo.edu/smith/

articles/ontologies.htm. Last checked 2007-03-29.

[Fou07] The Eclipse Foundation. The Official Eclipse FAQs, 2007. http://wiki.

eclipse.org/index.php/The_Official_Eclipse_FAQs. Last checked 2007-04-26.

[Gea06] Paul Gearon. Mulgara — an open source scalable RDF storage database in
Java. Website, 2006. http://mulgara.org/. Last checked 2007-02-19.

[GHJV95] Erich Gamma, Richard Helm, Ralph Jonhson, and John Vlissides. Design Pat-
terns — Elements of Reusable Object-Oriented Software. Professional Computing
Series. Addison-Wesley, 1995.

[Gru93] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5(2):199–220, 1993.

[Gru95] Thomas R. Gruber. Toward Principles for the Design of Ontologies Used
for Knowledge Sharing. International Journal of Human-Computer Studies,
43(5):907–928, November/December 1995.

[Gua98] Nicola Guarino. Formal ontology in information systems. In Nicola Guarino,
editor, Proceedings of FOIS’98, pages 3–15. IOS Press, Amsterdam, June 1998.

[Hei95] Sandra Heiler. Semantic Interoperability. ACM Comput. Surv., 27(2):271–273,
1995.

[Her06] Ivan Herman. Questions (and answers) on the semantic web, September 2006.
Available at http://www.w3.org/2006/Talks/0927-Berlin-IH/. Last checked
2007-02-16.

[HRO06] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data Integration: the
Teenage Years. In VLDB’2006: Proceedings of the 32nd international conference
on Very large data bases, pages 9–16. VLDB Endowment, 2006.

http://www.eclipse.org/swt/
http://www.modelica.org/publications/papers/ESS97Modelica.pdf
http://www.modelica.org/publications/papers/ESS97Modelica.pdf
http://ontology.buffalo.edu/smith/articles/ontologies.htm
http://ontology.buffalo.edu/smith/articles/ontologies.htm
http://wiki.eclipse.org/index.php/The_Official_Eclipse_FAQs
http://wiki.eclipse.org/index.php/The_Official_Eclipse_FAQs
http://mulgara.org/
http://www.w3.org/2006/Talks/0927-Berlin-IH/

BIBLIOGRAPHY 90

[HW04] Lofton Henderson and Dieter Weidenbrück. Applicability of CGM versus
SVG for technical graphics, April 2004. http://www.cgmopen.org/technical/

cgm-svg-20040419.html. Last checked 2007-05-01.

[ILO06] Frank Ipfelkofer, Bernhard Lorenz, and Hans Jürgen Ohlbach. Ontology
Driven Visualisation of Maps with SVG — An Example for Semantic Program-
ming. Proceedings of the conference on Information Visualization, 0:424–429, 2006.

[Inc] Vivid Solutions Inc. JTS — Java Topology Suite.
http://www.vividsolutions.com/jts/jtshome.htm. Last checked 2007-04-03.

[Inc07] Franz Inc. AllegroGraph 64-bit RDFStore, 2000–2007.
http://www.franz.com/products/allegrograph/. Last checked 2007-02-21.

[Int] Intergraph. SmartPlant P&ID. http://www.intergraph.com/smartplant/pid/.
Last checked 2007-05-02.

[Int97] International Organization for Standardization, Geneva, Switzerland. ISO IS
10628:1997(E): Flow diagrams for process plants — General rules, April 1997.

[Int99] International Organization for Standardization, Geneva, Switzerland. ISO IS
8632:1999: Information technology — Computer graphics — Metafile for the
storage and transfer of picture description information, 1999.

[Int03] International Organization for Standardization, Geneva, Switzerland. ISO IS
15926-2:2003: Industrial automation systems and integration — Integration of
life-cycle data for oil and gas production facilities — Part 2: Data model, 2003.

[Int05a] International Organization for Standardization, Geneva, Switzerland. ISO CD
TS 15926-4:2004: Industrial automation systems and integration — Integration
of life-cycle data for oil and gas production facilities — Part 4: Initial reference
data, January 2005.

[Int05b] International Organization for Standardization, Geneva, Switzerland. ISO DIS
10303-221:2005(E): Industrial automation systems and integration — Product
data representation and exchange Part 221: Application protocol: Functional
data and their schematic representation for process plant, 2005.

[Kar02] Tommi Karhela. A software architecture for configuration and usage of process sim-
ulation models. Software component technology and XML-based approach. VTT Pub-
lications 479, Espoo, 2002. ISBN 951-38-6011-6.

http://www.cgmopen.org/technical/cgm-svg-20040419.html
http://www.cgmopen.org/technical/cgm-svg-20040419.html
http://www.vividsolutions.com/jts/jtshome.htm
http://www.franz.com/products/allegrograph/
http://www.intergraph.com/smartplant/pid/

BIBLIOGRAPHY 91

[Kar07] Tommi Karhela. Personal communication, 2007.

[Khr] Khronos Group. OpenVG - The standard for Vector Graphics Acceleration.
http://www.khronos.org/openvg/. Last checked 2007-05-02.

[KHRS05] Y. Kalfoglou, B. Hu, D. Reynolds, and N. Shadbolt. Semantic integration tech-
nologies survey. Technical Report 10842, School of Electronics and Computer
Science, University of Southampton, Southampton, UK, 2005.

[KS03] Yannis Kalfoglou and Marco Schorlemmer. Ontology Mapping: the State of
the Art. Knowl. Eng. Rev., 18(1):1–31, 2003.

[Len02] Maurizio Lenzerini. Data Integration: a Theoretical Perspective. In PODS
’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 233–246, New York, NY, USA, 2002. ACM
Press.

[LK06] Tuukka Lehtonen and Tommi Karhela. Ontology approach for building and vi-
sualising process simulation models using 2d vector graphics. In Esko Juuso,
editor, SIMS 2006 Proceedings of the 47th Conference on Simulation and Modeling,
pages 141–146. Finnish Society of Automation, SIMS — Scandinavian Simula-
tion Society, September 2006.

[LW01] Chris Lilley and Dieter Weidenbrück. WebCGM and SVG: A Comparison, May
2001. http://www.gca.org/papers/xmleurope2001/papers/html/s12-1.html.
Last checked 2007-05-01.

[Mat] MathCore Engineering AB. MathModelica. http://www.mathcore.com/

products/mathmodelica/. Last checked 2007-05-03.

[MDG+04] William Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, and
Philippe Vanderheyden. Eclipse Development using the Graphical Editing Frame-
work and the Eclipse Modeling Framework. IBM, February 2004. Available at
http://www.redbooks.ibm.com/abstracts/sg246302.html. Last checked 2007-
03-05.

[Mic98] Microsoft Corporation et al. Vector Markup Language (VML), May 1998.
http://www.w3.org/TR/NOTE-VML. Last checked 2007-02-27.

[ML05] Jeff Mcaffer and Jean-Michel Lemieux. Eclipse Rich Client Platform — Designing,
Coding, and Packaging Java Applications. The Eclipse Series. Addison-Wesley

http://www.khronos.org/openvg/
http://www.gca.org/papers/xmleurope2001/papers/html/s12-1.html
http://www.mathcore.com/products/mathmodelica/
http://www.mathcore.com/products/mathmodelica/
http://www.redbooks.ibm.com/abstracts/sg246302.html
http://www.w3.org/TR/NOTE-VML

BIBLIOGRAPHY 92

Professional, pap/cdr edition, October 2005. See also http://eclipsercp.org.
Last checked 2007-03-15.

[Mod] Modelica Association. Modelica. http://www.modelica.org/. Last checked
2007-05-03.

[Mur] Alan Murta. GPC — General Polygon Clipper library.
http://www.cs.man.ac.uk/~toby/alan/software/. Last checked 2007-03-08.

[Nor05] Craig Northway. Understand Compositing and Color extensions in SVG 1.2
in 30 minutes! In SVG Open 2005, 4th Annual Conference on Scalable Vector
Graphics, August 2005. Available at http://www.svgopen.org/2005/papers/

abstractsvgopen/. Last checked 2007-03-08.

[Noy04] Natalya F. Noy. Semantic Integration: a Survey of Ontology-Based Ap-
proaches. SIGMOD Rec., 33(4):65–70, 2004.

[oF07] VTT Technical Research Centre of Finland. Simantics — Open modelling and
simulation environment, 2007. https://www.simulationsite.net/simantics.
Last checked 2007-03-15.

[Ora05] Oracle. RDF Support in Oracle. Whitepaper, February 2005. Available
at http://www.oracle.com/technology/tech/semantic_technologies/pdf/

semantic_tech_rdf_wp.pdf. Last checked 2007-02-19.

[OS99] Aris M. Ouksel and Amit Sheth. Semantic Interoperability in Global Informa-
tion Systems. SIGMOD Rec., 28(1):5–12, 1999.

[oSN04] National Institute of Standards and Technology (NIST). Cost Analysis of
Inadequate Interoperability in the U.S. Capital Facilities Industry, August
2004. Available at http://www.bfrl.nist.gov/oae/publications/gcrs/04867.
pdf. Last checked 2007-04-20.

[Pal07] Matti Paljakka. Personal communication, 2007.

[PD84] Thomas Porter and Tom Duff. Compositing Digital Images. Proceedings of the
11th annual conference on Computer graphics and interactive techniques, 18(3):253–
259, 1984.

[Pro] Programming Environment Laboratory, Department of Computer and Infor-
mation Science, Linköping University. The OpenModelica Project. http://

www.ida.liu.se/~pelab/modelica/OpenModelica.html. Last checked 2007-05-
03.

http://eclipsercp.org
http://www.modelica.org/
http://www.cs.man.ac.uk/~toby/alan/software/
http://www.svgopen.org/2005/papers/abstractsvgopen/
http://www.svgopen.org/2005/papers/abstractsvgopen/
https://www.simulationsite.net/simantics
http://www.oracle.com/technology/tech/semantic_technologies/pdf/semantic_tech_rdf_wp.pdf
http://www.oracle.com/technology/tech/semantic_technologies/pdf/semantic_tech_rdf_wp.pdf
http://www.bfrl.nist.gov/oae/publications/gcrs/04867.pdf
http://www.bfrl.nist.gov/oae/publications/gcrs/04867.pdf
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html

BIBLIOGRAPHY 93

[Ree03] Trygve Reenskaug. The Model-View-Controller (MVC) Its Past and Present.
JavaZONE, Oslo, 2003. JAOO, Århus, 2003, September 2003. Available at http:
//heim.ifi.uio.no/~trygver/2003/javazone-jaoo/HM1A93.html. Last checked
2007-04-25.

[Roc04] Christophe Roche. Ontology: a survey. Technical report, University of Savoie
— Equipe Condillac, 2004.

[SP06] Pekka Siltanen and Antti Pärnänen. Comparison of data models for plant life-
cycle information management. In Proceedings of the 13th ISPE International
Conference on Concurrent Engineering: Leading the Web in Concurrent Engineer-
ing., pages 346–353, 2006.

[Sut03] Ivan Edward Sutherland. Sketchpad: A man-machine graphical communica-
tion system. Technical Report UCAM-CL-TR-574, University of Cambridge,
Computer Laboratory, September 2003.

[Tuu06] Kimmo Tuukkanen. Representing Industrial Data models in OWL Web Ontol-
ogy Language. Master’s thesis, Helsinki University of Technology, November
2006.

[UG96] Mike Uschold and Michael Grüninger. Ontologies: principles, methods, and
applications. Knowledge Engineering Review, 11(2):93–155, 1996.

[uis] uismedia Lang and Müller. Web Mapping with SVG Technology. http://www.
mapviewsvg.com/index.html. Last checked 2007-05-02.

[Uni] University of Maryland. Piccolo Toolkit.
http://www.cs.umd.edu/hcil/piccolo/. Last checked 2007-02-27.

[VTTa] VTT Technical Research Centre of Finland. BALAS Process Simulation Soft-
ware. http://balas.vtt.fi/. Last checked 2007-02-26.

[VTTb] VTT Technical Research Centre of Finland. The Advanced Process Simulator
Environment. http://apros.vtt.fi/. Last checked 2007-02-26.

[Wor99] World Wide Web Consortium. Resource Description Framework (RDF), 1999.
http://www.w3.org/RDF. Last checked 2007-02-01.

[Wor01] World Wide Web Consortium. WebCGM 1.0 Second Release, December 2001.
http://www.w3.org/TR/REC-WebCGM/. Last checked 2007-03-07.

http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/HM1A93.html
http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/HM1A93.html
http://www.mapviewsvg.com/index.html
http://www.mapviewsvg.com/index.html
http://www.cs.umd.edu/hcil/piccolo/
http://balas.vtt.fi/
http://apros.vtt.fi/
http://www.w3.org/RDF
http://www.w3.org/TR/REC-WebCGM/

BIBLIOGRAPHY 94

[Wor03] World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1 Specifica-
tion, W3C Recommendation, January 2003. http://www.w3.org/TR/SVG/. Last
checked 2007-02-27.

[Wor04a] World Wide Web Consortium. RDF Vocabulary Description Language
1.0: RDF Schema, February 2004. http://www.w3.org/TR/rdf-schema/. Last
checked 2007-02-01.

[Wor04b] World Wide Web Consortium. RDF/XML Syntax Specification (Revised),
February 2004. http://www.w3.org/TR/rdf-syntax-grammar/. Last checked
2007-02-16.

[Wor04c] World Wide Web Consortium. Web Ontology Language (OWL), February
2004. http://www.w3.org/2004/OWL/. Last checked 2007-02-01.

[Wor06] World Wide Web Consortium. SPARQL Query Language for RDF, October
2006. http://www.w3.org/TR/rdf-sparql-query/. Last checked 2007-02-20.

[Wor07] World Wide Web Consortium. WebCGM 2.0, January 2007. http://www.w3.

org/TR/webcgm20/. Last checked 2007-03-07.

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/webcgm20/
http://www.w3.org/TR/webcgm20/

	Abbreviations
	Glossary
	List of Figures
	Introduction
	Background and Motivation
	Objectives and Scope
	Structure of the Thesis

	Technology Review
	Ontology-Based Modelling
	Interoperability and Integration
	Ontologies
	Designing Ontologies
	Ontologies in Practice
	Semantic Data Storage
	Querying Semantic Models

	Graphical Modelling
	2D Graphics
	Graphical Editing Frameworks

	Process Modelling and Simulation
	ISO 10628
	ISO 10303 AP-221
	Process Simulation
	Existing Tools

	Requirement analysis
	User Roles
	Kernel Developer
	Library Developer
	Model Configurator
	Model User

	Implementation Environment
	Simantics
	Layer0
	Data Model
	Part Division

	Client-Server Model
	ProCore
	Transactions
	Undo

	Plug-ins
	Simulation
	Trending

	Design
	Ontologies
	Vector Graphics Ontology
	Structural Modelling Ontology
	Flowsheet Diagramming Ontology
	Domain-specific Flowsheet Diagramming Ontologies
	Ontology Mappings

	Symbol Design
	Parametrisation

	Diagram Typing

	Implementation
	Ontology Design
	Graphical Editing Framework
	Supporting Technologies
	Dissection of the Framework

	Flowsheet Editors
	Symbol Editor
	Diagram Editor

	Results and Evaluation
	CASE: Flowsheet modelling of a multi-phase chemical process
	Scalability
	Usability
	Case Conclusions

	Ontologies
	Scalability

	Ontology-based Modelling and Mapping

	Conclusions

