
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Laboratory of Software Technology

Toni Kalajainen

An Access Control Model in a Semantic Data

Structure: Case Process Modelling of a Bleaching

Line

Master’s Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Technology.

Espoo, May 31, 2007

Supervisor: Prof. Markku Syrjänen

Instructor: Hannu Niemistö, Ph.D.

ii

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS

Author: Toni Kalajainen

Name of the Thesis: An Access Control Model in a Semantic Data Structure:

Case Process Modelling of a Bleaching Line

Date: May 31, 2007 Number of pages: 97 + 24

Department: Department of Computer Science and Engineering

Professorship: T-93 Knowledge Engineering

Supervisor: Prof. Markku Syrjänen

Instructor: Hannu Niemistö, Ph.Lic.

The usage of semantic graph model as data structure promotes information inter-
operability, reusability, availability, and communication between systems. In a multi-
user environment access to data must be controlled.

In this thesis we have studied the use of a access right tuple (subject, access right, ob-
ject) in a semantic graph data structure. In contrast to traditional systems, the object
is a sub-graph, which is subject to posterior structural changes. Posterior changes are
modifications that occur after the initial configuration of an access permission. Also,
in accordance to the graph model idea, the access control configurations reside in the
same data structure as the data that is controlled.

The problem is divided into smaller independent sub-problems. The control of users
and accesses is based on definitions in respective ontologies. The objects of accesses
are described with views, which span sub-graphs. Views are formed out of viewpoints,
which are annotated to concepts that are defined in ontologies.

Keywords: ontology-based, access control, semantic, graph model

iii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Toni Kalajainen

Työn nimi: Semanttisen graafitietorakenteen pääsynhallintamalli,

Tapaus valkaisulinjan prosessimallinnus

Päivämäärä : 31.5.2007 Sivuja: 97 + 24

Osasto: Tietotekniikan osasto

Professuuri: T-93 Tietämystekniikka

Työn valvoja: Prof. Markku Syrjänen

Työn ohjaaja: Hannu Niemistö, FL

Semanttisen graafimallin käyttäminen tietosisältöjen kuvaamisessa edesauttaa tiedon
yhteiskäyttöä, uudelleenkäytettävyyttä ja saatavuutta, sekä järjestelmien välistä kom-
munikaatiota. Monen käyttäjän ympäristössä pääsyä tietoon on pystyttävä hallitse-
maan.

Tässä työssä on tutkittu pääsyoikeusmonikon (subject, access right, object)
soveltamista semanttiseen graafimalliin. Perinteisistä järjestelmistä poiketen monikon
objekti on aligraafi, jonka sisältö ja rakenne voi muuttua pääsyoikeuden asettamisen
jälkeen. Lisäksi, graafimalliajatuksen mukaisesti, myös pääsynhallinta toimii samassa
tietorakenteessa kuin tieto, jota hallitaan.

Ongelmaa on lähestytty hajoittamalla kokonaisonglema pienempiin ja itsenäisempiin
osaongelmiin. Käyttäjiä ja pääsyjä hallitaan vastaaviin ontologioihin perustuvilla
määritteillä. Pääsyoikeuksien kohteita on kuvattu näkymämääritteillä, jotka virittävät
aligraafeja. Näkymät muodostuvat näkökulmista, joita on yhdistetty ontologioissa ole-
viin käsitteisiin.

Avainsanat: ontologiapohjainen, pääsynhallinta, semanttinen, graafimalli

Acknowledgements

I want to thank my supervisor professor Markku Syrjänen for his comments and guidance,
and my instructor Hannu Niemistö for his insight and rapid feedback.

My gratitude also goes to my fellow Simantics platform development team members Kalle
Kondelin, Tuukka Lehtonen, Marko Luukkainen, Antti Villberg, and the team leader
Tommi Karhela.

Finally, I would like to thank my friends and family for the support I received over the
years of my studies.

Otaniemi, May 31, 2007

Toni Kalajainen

iv

Contents

Abbreviations x

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Objectives and Scope . 2

1.3 The Problem Statement . 2

1.4 Structure of the Thesis . 3

2 Previous Work 4

2.1 Access Permission . 4

2.2 Access Control Paradigms . 5

2.2.1 Mandatory Access Control . 5

2.2.2 Discretionary Access Control . 5

2.2.3 Role-Based Access Control . 6

2.2.4 Credential Based Access Control . 8

2.2.5 Access Matrix Model . 9

2.3 Positive and Negative Authorization . 10

2.3.1 Authorization resolve policies . 11

2.3.2 An Extended Authorization Model for Relational Database 11

2.3.3 Weak and Strong authorization . 12

2.4 Delegations . 13

2.4.1 Delegations in DAC . 13

2.4.2 Delegations in RBAC . 13

2.4.3 Delegation Access Rights . 14

2.4.4 Delegation Model Characteristics . 14

v

CONTENTS vi

2.5 Administration Model . 16

2.6 Semantic Web . 17

2.6.1 Resource Description Framework . 17

2.6.2 Web Ontology Language . 18

2.6.3 Triple . 18

2.6.4 Query Languages . 19

2.6.5 Ontology . 19

2.7 Policies . 20

2.7.1 What is a Policy . 21

2.7.2 Policy Conflicts . 22

2.7.3 Resolution of Conflicts . 23

2.7.4 Policy Languages . 24

2.8 Concept Propagation . 26

2.8.1 Concept-level Access Control for the Semantic Web 26

2.8.2 Lenses . 26

2.8.3 View . 27

2.9 Contexts . 27

2.9.1 Reified Statements . 28

2.9.2 Quads . 28

2.9.3 Object-oriented contexts . 29

2.9.4 Named Graph . 29

2.9.5 Domains . 30

2.10 Semantic Access Control . 30

2.10.1 Semantic Access Control Model . 30

2.10.2 RDF Triple Store Access Control . 31

2.11 Principles of Design . 32

3 Implementation Environment 35

3.1 Introduction . 35

3.2 Layer0 . 35

3.2.1 Classes and Instances . 36

3.2.2 Relations . 37

3.2.3 Properties . 37

CONTENTS vii

3.3 Server-Client Model . 38

3.4 Transactions . 38

3.4.1 Triple Filter . 40

3.5 Acquire Mechanism . 40

3.6 Viewpoint . 41

3.6.1 Formal definition . 43

3.6.2 Modelled Viewpoint . 43

3.7 Ontology Mappings . 44

4 Design 46

4.1 Requirements . 46

4.1.1 Business Goals . 46

4.1.2 User Groups . 47

4.1.3 Non-Functional Requirements . 48

4.1.4 Functional Requirements . 49

4.2 Design Constraints . 49

4.3 Design Evaluation . 50

4.3.1 Paradigm . 50

4.3.2 Open or Closed policy . 51

4.3.3 Delegation model . 51

4.3.4 Administration policy . 52

4.3.5 Support for negative authority, Conflicts 52

4.3.6 Authorization and Privileges . 52

4.3.7 Concepts . 53

4.3.8 Contexts . 53

4.4 Discussion . 53

5 Relation Restrictions 55

5.1 Introduction . 55

5.2 Access restriction relations . 56

5.3 Credentials . 58

5.3.1 Credential Expression . 58

5.3.2 Credential Delegation . 59

5.4 Ownership . 60

CONTENTS viii

5.5 Immutability . 60

5.6 Access Restriction Example . 60

5.7 Implementation . 61

6 Propagation and Context Design 64

6.1 Domain Ontology . 64

6.1.1 Requirements and Design Criteria 64

6.1.2 Ontology . 65

6.1.3 Formally . 66

6.2 Binding with RRBAC . 66

6.3 Implementation . 67

6.4 Discussion . 67

7 Concept Ontology 69

7.1 Introduction . 69

7.2 Concept Ontology . 70

7.2.1 Concept Consist Viewpoint . 70

7.2.2 Concepts across ontology mappings 71

7.3 Discussion . 71

8 Authorization Design 73

8.1 Basic RBAC Ontology . 73

8.2 Binding with RRBAC . 73

8.2.1 Intrinsic Credential . 75

8.2.2 Role Administrator . 75

8.3 Implementation . 75

9 Case Process Modelling of a Bleaching Line 77

9.1 Introduction . 77

9.2 Binding the Access Control to domain ontologies 78

9.3 Setting up an example case . 80

9.4 Using the access control in the example case 82

10 Analysis and Discussion 84

10.1 Usability . 84

CONTENTS ix

10.2 Security . 85

10.3 Performance . 86

10.4 Scalability . 86

10.5 Discussion . 87

10.6 Future Work . 87

10.6.1 Domains . 88

10.6.2 Concept Description . 88

10.6.3 RRBAC . 89

11 Conclusions 90

Glossary 98

A Layer0 103

B RRBAC Relation Class Hierarchy 105

C Domain Ontology 107

D Concept Ontology 110

Abbreviations

ACL Access Control List

CBAC Credential Based Access Control

CSS Cascading Style Sheets

DAC Discretionary Access Control

DBMS Database management system

DTP Denial Takes Precedence

MAC Mandatory Access Control

OPC OLE for Process Control

OWL Web Ontology Language

PKI Public Key Infrastructure

PTP Positive Takes Precedence

RBAC Role-based Access Control

RDF Resource Description Framework

RDFS RDF Schema

RRBAC Relation Restriction Based Access Control

SAC Semantic Access Control

XML Extensible Markup Language

W3C World Wide Web Consortium

x

Chapter 1

Introduction

1.1 Background and Motivation

In enterprise systems, access control is not only required for internal security, but also
for dealings with customers and suppliers. For example, a group of organizations work
together in a joint project with a shared information system. In order to make the project
work, each party must submit a part of their intellectual property to the system. As there
are competitors working in the same project, all participants want to keep the amount of
revealed information to the minimum and share data only with their immediate customers.
Access control is brought into use to supervice the flow of information.

The work in this thesis is done on a plaform called Simantics [oF07]. The goals of Simantics
are knowledge management and information integration in engineering life cycle. It is a
multi-purpose platform, but has a focus on integration of simulator and plant modelling
applications. Simantics is also intended as an environment for multi-user collaboration.
The data structure in Simantics is based on semantic graph model.

Information described with semantic graph data structure allows several benefits. The
use of a simple data primitive, triple, enables the shared use of common mechanisms. For
instance, when access control, version control, and information sharing are implemented
at low level, their functionalities apply to high-level applications as well.

This thesis is a part of Plamos and Semill research projects conducted by Technical Re-
search Centre of Finland (VTT), and others.

1

CHAPTER 1. INTRODUCTION 2

1.2 Objectives and Scope

The objective of this thesis is to find and implement a functional access control model to
Simantics platform. The aim is to make it simple but practical enough for the users to
adopt.

The protection of confidentiality and integrity are in the scope of the thesis, as only the
authorized individuals must be able to access and modify resources. Issues related to
network communication are not in the scope.

A highly important aspect of the security systems is auditing. The purpose of auditing is
logging and analysing attempted and realized security breaches. It behaves as a security
method as it is a deterrent for users to not attempt security violations. However, this
being said, auditing has been left out of the scope in order to keep the length and the
focus in control.

1.3 The Problem Statement

In traditional information systems, the object of an access permission is typically a dis-
tinctive object such as a document or a folder. In contrast, the graph data structure is
solely based on nodes and edges. One of the key problems is how to describe the object of
a permission. Since a single node or edge is too fine grained, there needs to be a method
for describing sub-graphs.

The second key problem is related to the description of what an object consists of in the
graph model. Instead of hand-picking individual edges, the user works with high-level
objects and remains ignorant about the specifics of the low level data structure.

The third issue relates to propagation of permissions among objects. In file systems, the
user can choose whether a permission set on a directory propagates to sub-directories
recursively. The same property should be also available in the graph.

Finally, in Simantics, information contents are shared and linked with mapping mechan-
sims. For instance, simulators, 2D Diagrams, 3D Diagrams, etc, are bound together with
mapping relations. This aspect must be taken into account in the design of the access
control. For instance, the user can choose whether a permission applies to the mapped
counterparts of an object.

CHAPTER 1. INTRODUCTION 3

1.4 Structure of the Thesis

The thesis is divided into 11 Chapters. Chapter 2 gives to the reader a review on tech-
nologies related to access control and semantic graph data structures. Chapter 3 has a
description of the environment this work is implemented in. In Chapter 4, we have eval-
uated different solution options in respect to the technologies presented in the Chapter 2.
Chapter 5 has a presentation of our permission model. Chapter 6 describes a model for
resource grouping and automatic propagation of content. Chapter 7 examines how the
structures of objects and inter-object relations are described. Chapter 8 discusses how
Role-Based Access Control is integrated to the permission model. Chapter 9 presents the
overall access control model in an application use case. Chapter 10 has a discussion and
analysis of the results, and also has a review of the future work. Finally, Chapter 11 sum-
marizes the work in this thesis. The meanings of terms vary in the literature, therefore a
single set of meanings and terms was chosen. They are available in the glossary.

Chapter 2

Previous Work

In this chapter, we take a review to technologies related to access control models and
semantic graph models.

The chapter is divided into 11 sections. At first, the terms we shall use with accesses
are explained in Section 2.1. As an introduction to access control, we take a glance at
the traditional access control paradigms in Section 2.2. In the following Section 2.3, a
model for complementary access rights is presented. Section 2.4 discusses permission del-
egations. Different models of administration are presented in Section 2.5. Section 2.6 has
an introduction to Semantic Web. Policy models are important for access control because
of their delegation and conflict resolution methods. They are discussed in Section 2.7. In
Section 2.8, we shall review concept based propagation methods. The section is rather
short as there is not much literature about the subject. Contexts in the graph model
is an important issue because they can be used as an object of a permission. They are
presented in Section 2.9. Section 2.10 has a review on access control systems devised for
semantic web. Finally, in Section 2.11 we review a set of principles that aid in the design
process of access control models.

2.1 Access Permission

Permission is a tuple, typically < subject, accessright, object >, that describes an access
control configuration. Subject is an active entity in the system, typically a user or a role.
Access Right is a relation between the subject and the object. It describes the privilege

the subject is allowed to do on the object, for example: read, write, or execute. Object is a
system resource, either passive (file, folder) data receptacle, or active (printer, application,

4

CHAPTER 2. PREVIOUS WORK 5

privileged procedure).

2.2 Access Control Paradigms

The well known traditional access control models come down to three models. These are :
Mandatory Access Control, Discretionary Access Control and Role-Based Access Control.
In addition to these, we will present a more recent credential based access control (CBAC)
in Subsection 2.2.4.[FK92]

2.2.1 Mandatory Access Control

Mandatory Access Control (MAC) is also known as the Bell-la Padula model. In it, it is
compulsory to attach security labels to all resources. Labels have security levels, which
are totally ordered. They must be attached to all objects and subjects by the system
administrator, thus the name mandatory.

MAC contains two very simple rules: “no read up” and “no write down”. This means that
a subject with high security level can read all objects that are on the same or lower level.
Also, an object written at a certain security level can only be read at the same or higher
level. To write to subjects of lower security levels, the author may lower its security level
temporarily.

These rules ensure that information flows upwards only. MAC policy was originally de-
veloped for military use where security levels are tightly coupled with military ranks. See
Figure 2.1 for an example of information flow in MAC. [Ben06]

2.2.2 Discretionary Access Control

Discretionary Access Control (DAC) is typically used as access control policy in filesys-
tems. Unlike in MAC, resource owners are allowed to pass access rights to other subjects
at their own discression, hence the name. In essence, permissions are propagated at the
discretion of authoritative entities, e.g. resource owners. In DAC Model, the creator of an
object automaticly becomes the owner, and only the owner can destroy the object. There
are different variations of DAC model. In some of them, the owner is able to grant other
users privileges to delegate permissions further (See Section 2.4). [Ben06]

CHAPTER 2. PREVIOUS WORK 6

writes

reads

writes

reads

writes

reads
writes

reads

Information FlowSubjects

General

Colonel

Captain

Liutenant

Figure 2.1: Information flow in Mandatory Access Control

2.2.3 Role-Based Access Control

Role-Based Access Control (RBAC) is a versatile model that conforms closely to the orga-
nizational model used in corporations. Corporations have typically a hierarchial structure
where administrative rights match the position. RBAC meets this requirement by sepa-
rating users and roles. Access rights are given to roles, and roles are further assigned to
users. Role is a combination of users and privileges. There are different models of RBAC
described by Sandu et al [SCFY96]. Their features are summarized in Table 2.1.

Roles can inherit other roles and like so form a hierarchial structure called role hierarchy.
The relation is called role inheritance where one of the roles is junior role and the other
one is senior role. The senior role acquires all the privileges of the junior role including
all recursive privileges as the relation is transitive. See Figure 2.2 for an example of a role
hierarchy.

RBAC has been shown to be a policy-neutral model. It denotes that RBAC is a viable
model for both discretionary[SM98] and mandatory policies[OSM00]. The concept of one-
directional information flow of MAC model can be achieved by using two role hierarchies,
one for read-down and one for write-up. In the case of DAC model, resource ownership and
permission granting capabilities can be emulated by using multiple roles for each object.
There is one role for object owner, and others, depending on DAC variation, for privilege

CHAPTER 2. PREVIOUS WORK 7

Project Manager

ProgrammerEngineer

Project Member

Figure 2.2: An example of a role hierarchy

Model Name Features

RBAC0 Basic RBAC Users, Roles, Permissions, and Sessions

RBAC1 Hierarchical RBAC Adds Role Hierarchy to RBAC0

RBAC2 Constrained RBAC Adds Constraints to RBAC0

RBAC3 Consolidated RBAC Combines RBAC1 and RBAC2

Table 2.1: The features included in RBAC models

grantors and privilege holders. RBAC model is flexible enough to fit into both commercial
and military access policy requirements.

Separation of duties stands for the principle that no user should be given too much privi-
leges. It was initially described by Clark and Wilson [CW87]1. The idea aims to prevent
abuse of authority. For example, the same person should not be responsible for managing
both accounts and purchases. One way to enforce separation of duties is to set constraints
on roles and permissions. For instance, the problem could be solved with a constraint that
specifies that the two roles (account manager and purchase manager) are mutually exclu-
sive. The system would now prevent assignment of any user to both roles. Constraints
may also be set on permissions. For example, permission to do accounting and purchase
could be set mutually exclusive. In this case, the system would prevent creation of a role
with both permissions. [SS94] [SCFY96]

With usage of prerequisite roles a system may be configured to assert applicability and
competence of assigned users. Prerequisite roles is a constraint that demands that all
users assigned to a role must also be assigned to a list of prerequisite roles. Also, like
with exclusive roles, dual constraints may also be set on permission level. Roles can be
obligated to have one permission before another can be granted.

1according to references in [MS93] and [Ben06]

CHAPTER 2. PREVIOUS WORK 8

2.2.4 Credential Based Access Control

In the past, access control systems have been built to be used in centralized information
systems, which are based on centralized administration. Users are registered to the system
and given access permissions on resources. Access rights to resources are admitted after
the user has identified herself. This model is suitable for closed organizations.

In the emerging credential based access control, enforcement mechanisms provide access
control mechanisms for open and distributed environments. CBAC systems are based on
authorization instead of authentication. They do not require security infrastructure or
a central control component. Credential based system allows potential anonymity in the
usage of service. Users do not need to specifically identify themselves, only their authority
over a resource.

Credentials are digitally signed documents, which assert a binding between a principal and
some property of its. A principal is a user with identifications encrypted with asymmetric
cryptography. Property may be a granted capability for a service, an identity or any
asserted characteristic of the principal, such as profession or skill. Credentials can be
transferred over unsecure channels like the Internet. [BW04][ASW04]

The issuer of a credential is responsible for the correctness of the assertion of the certificate.
Anyone who inspects a credential has to verify the signature of the credential and evaluate
their trust in the issuer. For example, anyone could issue a credential that asserts that
someone is the president of their organization. The inspector of the credential has to
be able to evaluate whether the issuer has authority over the matter. Access decisions
are based on local access policies which have criteria for capabilities and characteristics
required from the user.

A resource owner is responsible for maintaining access control lists, issuing authorization
certificates and delegating certificates. It is possible for the resource owner to lower the
privileges of already issued certificates locally; even recursively to complete chains of
delegated credentials.

The service provider makes and verifies the local access policies. Access is granted if the
user provides sufficient set of credentials. For instance, web service provider requires that
customer is 18 years of age and lives at a specific location. The customer needs to provide
certificate of residency and birth time.

Credential based systems can be either centralized or distributed. For closed system, kernel
based architecture provides sufficient protection, but for distributed systems, asymmetric
cryptographic methods are required.

CHAPTER 2. PREVIOUS WORK 9

File 1 File 2 Alice Bob Agent

Alice Read, Write Execute - - Owner, Start, Stop

Bob - Read, Write - - -

Agent Read - - - -

Table 2.2: An example of access matrix model.

For asymmetric cryptography, public keys are required to be transferred between the
parties. This can be handled with usage of Public Key Infrastructure (PKI) and a trusted
third party.

2.2.5 Access Matrix Model

Access Matrix Model is an abstraction of the generic access control model. The idea was
formed from the initial work of Lampson [Lam71] which led to generalization by Harrison,
Ruzzo and Ullman [HRU76] [HR78]. The model is a two-dimensional matrix that contains
access relations between subjects and objects. There is a row for each subject and a column
for each object. The access rights are the elements of the matrix (See Table 2.2).

A single user can be assigned multiple subjects, but then the user has to choose one subject
to log in as. For instance, a user is working in multiple projects, she is assigned a subject
for each project. To work with one project, she needs to log in with the corresponding
subject. [SS94]

A relation between two subjects is expressed by extending objects with subjects. For
example, a user creates a software agent to process data. A subject is created for the
agent and granted required privileges for execution. Agent’s execution is controlled by
its owner. The ownership is assumed by the user, and is expressed in the matrix as a
relation from the user’s subject to the agent (See the example Table 2.2 in which Alice is
the owner of Agent).

Access Control List

In access control list (ACL), each object is assigned with a list of access rights of the
subjects. The data is stored in the point of view of the objects. ACL is a common
implementation approach to the matrix model. Its benefit is the direct refrence from the
objects to the subjects. Often, the list of an object is assigned a dedicated administrator
that controls its access rights. See Figure 2.3 for an example of ACL.

CHAPTER 2. PREVIOUS WORK 10

Alice

Read , Write

Agent

Read

Bob

Read , Write

Alice

Execute

File 1 File 2

Figure 2.3: Access Control List for the matrix example in the Table 2.2

Capabilities

Capabilities is a list of access rights the subject has. It is a row view to the access control
matrix. Capability is an alternative implementation approach to ACL. The benefit of
capability is the direct reference of resources the subject has access rights to. On the
other hand, evaluating the access rights of the object is a costly operation. Therefore, in
some systems, a hybrid solution of both ACL and capability list is utilized. See Figure 2.4
for capabilities list of access matrix example of Table 2.2.

2.3 Positive and Negative Authorization

An access control model that supports positive and negative authorization has a sign field
in permission tuple, for example < subject, sign, access right, object >. The sign is either
positive or negative, and determines the effect of the access right. The feature enables
adding of exceptions in existing permissions, which on the other hand poses a possiblity
for conflicts. Permission conflicts must be resolvable with a policy.

Models without negative authorization have a default policy that determines the sign of
a permission. Open policy is a policy where accesses are by default allowed, and denied
if there exists an explicit negative authorization. The opposite, closed policy, denies all
access, unless a corresponding positive authorization permits it. [AKS04]

CHAPTER 2. PREVIOUS WORK 11

File1

Read , Write

Agent

Owner ,
Start , Stop

Alice

Bob

Agent

File2

Execute

File2

Read , Write

File1

Read

Figure 2.4: Capabilities list for the matrix example in the Table 2.2

2.3.1 Authorization resolve policies

Denial Takes Precedence (DTP) is a conflict resolving policy that states that in the case
there exist multiple conflicting permissions, any denying permission takes precedence.
Positive Takes Precedence (PTP) is a policy that states that if multiple permissions over
a resource are conflicting, any allowing permission will take precedence.

Example

Permissions Resolve Policy Resolution

< Alice,+, Read, ProjectX > Positive Takes Allow

< Alice,−, Read, ProjectX > Precedence

< Alice,+, Read, ProjectX > Negative Takes Deny

< Alice,−, Read, ProjectX > Precedence

2.3.2 An Extended Authorization Model for Relational Database

Bertino et al [BSJ97] have proposed an access control model for relational databases with
support for permission delegation and negative authorizations. In their model, simul-
taneous existence of positive and negative permissions is not concidered as inconsistent.

CHAPTER 2. PREVIOUS WORK 12

Instead, the positive permission is concidered to be in a blocked state. Negative denies
usage of the resource and thus takes precedence. As an exception, the owner of a resource
cannot be blocked.

If a user who has authorization over a resource, has delegated privileges to other users,
and becomes later blocked over the resource, the system will not propagate the negative
permission over to delegatees. The delegatees will keep their privileges unless the user who
granted the negative permission explicitely cancels the permission from the delegatees as
well. In addition, when a permission becomes blocked, the user loses the right to revoke
permissions she has granted earlier.

2.3.3 Weak and Strong authorization

Strong and weak authorizations were introduced by Rabitti et al [RBKW91]. The model
allows coexistence of both positive and negative permissions. Strong authorizations are
used for enforcing strict authorizations which cannot be revoked. The opposing, weak

authorization, are overridden with strong authorizations and in some cases with other
weak authorizations. Weak authorizations can be configured with exceptions that state
the conditions under which the authorization can be overruled. In case of two strong
authorizations, the negative privilege type takes precedence. The conflict resolution pol-
icy states that strong authorizations takes precedence over the weak ones. With two
conflicting weak authorizations, positive takes precedence.

Motta et al [MF03] have devised a role-based access control model for electronic patient
record (EPR) for large health care organizationss. In their model a permission is defined
as a 5-tuple < r, pt, opr, obj, at >, where r is a role; pt is a privilege type, which can be
positive (+) or negative (-); opr is an operation; obj is an object (the resource); and at

specifies authorization type, which is either strong or weak.

One of the benefits of weak/strong authorizations is that the security manager is given
tools for utilizing both DTP and PTP. On the other hand, the extendability of the system
is limited, authorizations can be overridden only once; exceptions cannot have further
exceptions. Although, according to the authors of the EPR, the model is sufficient for the
requirements in the case.

CHAPTER 2. PREVIOUS WORK 13

2.4 Delegations

In business and military organizations, the usual form of distributing work is delegation.
For example, the project manager is given an assignment to be carried out. The manager
evaluates work amount and available manpower, and then further delegates sub-tasks to
subordinates. The project manager is called delegator and the employee receiving the
delegation the delegatee.

2.4.1 Delegations in DAC

Discretionary access control paradigm also follows this model. In DAC, the owners of the
resources are allowed to decide who gets access to their resources. Different variations exist.
The Strict DAC allows permissions to be granted only by the owner, whereas in Liberal

DAC, the resource owners can decide who can delegate permissions of their resource.
Liberal DAC has different sub-variations regarding to how many times a permission can
be delegated: One-level grant, Two-level grant and Multi-level grant. The variation DAC

with change of ownership allows subjects to share and transfer ownership with other
subjects. The two variations DAC with grant-independent recovation and DAC with

grant-dependant revocation determine whether it is the grantor alone who can revoke
delegated permissions, or whether others can revoke delegations as well. [Ben06]

2.4.2 Delegations in RBAC

In role based access control, a senior role is able to perform actions of a junior role due
to role inheritance. Sometimes it is necessary to enable the junior role to perform with
the permissions of the senior role. Tamassia et al [TYW04] have proposed role-based

cascaded delegation, a model for delegation of authority in decentralized authorization
environments. They propose a cascaded credential that resolves the source of the del-
egation. One of the main benefits of the role delegation is that a delegator can issue
delagations to a administrative role without knowing the members of that role.

SangYeob Na et al [NC00] have proposed a role delegation method consisting of delegation
server and delegation protocols. The delegation server makes centralized decisions about
whether delegations are permitted or not. Delegations are requested from the server using
a delegation protocol. Permissions are either positive or negative. Access to permissions
with the negative mode is denied unless condition of a special exception fulfills. There are
two types of delegations: active and passive. Active delegations occur when the subject
requests a delegation to another role the user is also member of. In passive delegation,

CHAPTER 2. PREVIOUS WORK 14

delegation is requested to some other subject. In order to change negative permission to
positive, delegation request must be performed. Request is accepted by server if special
exception condition is true.

Wang et al [WO06] have presented a powerful delegation and delegation revocation model
that is inteded for decentralized administration of RBAC.

2.4.3 Delegation Access Rights

Kagal et al [KFJ03] use three kinds of rights related to delegations in their Rei policy
language:

� Right to execute – The right to execute the action that is associated with the per-
mission.

� Right to delegate execution – The right to delegate the right to execute. This right
does not include the right to execute, only to delegate it to others.

� Right to delegate delegation right – This right allows the user to empower others
with the right to delegate this right further, and to delegate the right to execute the
action.

2.4.4 Delegation Model Characteristics

Barka et al [BS00] suggests various characteristics of privilege delegation models:

Permanence Permanence refers to the time duration property of delegations. In per-

manent delegation the delegatee permanently assumes the privileges. Temporary

delegation refers to a time limit property of the delegation. The delegation is auto-
maticly revoked after it is expired.

Monotonicity Monotonicity is a property that refers to maintaining of privileges after
delegation. A Monotonic delegation preserves the privileges of delegator after del-
egation. In opposition, there is a non-monotonic delegation that denotes that the
delegator loses her privileges for the duration of the delegation. Once the delega-
tion is revoked, the delegator regains the original privileges. The delegator remains
responsible for the actions the delegatee performs with the delegated privileges.

Totality Totality refers to the completeness of the delegations. A total delegation is
a transfer of full privileges from the delegator to delegatee. In contrast, a partial

delegation transfers only a subset of privileges.

CHAPTER 2. PREVIOUS WORK 15

For example, a project manager delegates partial privileges, privileges to administer
web server, from her project management role to a web server administrator role.

Administration This feature is about who supervices delegations. There are two kinds
of delegation administrations: Self-acted delegations and agent-acted delegation.
The first one refers to delegations where delegator herself monitors the delegation
process. The latter one is a delegation type where a named third party member
administrates the delegation.

Levels of delegation This property refers to the constraint on how deep a delegation
can be redelegated. A single step delegation cannot be redelegated, but Two- or

multi-step delegations allow delegation chain to continue further.

For instance, a professor can delegate laboratory access privileges as a single step del-
egation to a lab assistant. The assitant is constricted from delegating the privileges
any further.

Multiple delegation The property is a constraint about to how many a privilege can be
delegated. For example, in the previous example, the delegation of the professor’s
lab access privileges are constrained to the number of assistants she is allowed to
have.

Agreements This characteristic refers to the process of transferring delegation. Unilat-

eral agreement is a one-way delegation of the privileges. Delegatees can be forced
privileges whether they wanted them or not. In a bilateral agreement the delegation
transfer process has two steps, wherein the delegator initiates the delegation, and
the delegatee approves the responsibility.

Unilateral agreement can pose a denial of service vulnerability in the file systems
where users have a limited quota of disk space, wherein an attacker delegates own-
ership of files to victim in order to fill her quota.

Revocation Revocation stands for the act of canceling already delegated privileges.
There are issues revolving around the revocation: Cascading revocation and Grant-

dependency.

A cascading revocation refers to the indirect revocation of privileges. In case the
level of delegation is more than one, the cascading revocation will invoke propagation
of revocations.

For example: User X has privilege P , which she has delegated to user Y , who has
further delegated it to Z. Cascading revocation can occur due to:

CHAPTER 2. PREVIOUS WORK 16

- Direct revocation of delegation – X revokes Y ’s privileges directly.

- Indirect loss of privileges – X revokes Y ’s privileges, and due to loss of Y ’s
power Z loses them indirectly.

Grant-dependency refers to the authority about who can revoke delegations. In
grant-dependent delegation only the original delegator is allowed to revoke delega-
tions. The opposing grant-indepenpendent delegation allows users to revoke delega-
tions of others as well.

In grant-depenpendent model, if a principal behaves badly, there might be a delay
before the single authorized principal awakens to respond by revoking privileges of
the offender. As in opposing grant-indepenpendent model, there are more members
that are able to respond to the misbehaviour.

Delegation Types In Rei policy language, Kagal et al [KFJ03] have identified two types
of delegations: while- and when-delegations. In Rei delegations can have conditions.
While-delegations necessitate that all conditions are satified for the delegation to be
effective. Whereas a when-delegation requires only that the conditions are satisfied
at the very moment of delegation.

Barka and Sandhu [BS00] brings out that most combinations of the characteristics are
not feasible. They have found a systematic approach for finding the few that are usable.
The main distinction is in the permanence property (permanent and temporary delegation
models). They claim that for delegation models with permanent delegations there is only
one distinctively practical combination, which is: Permanent, Non-monotonic, Self-acted

and Total delegation. For the non-permanent models (with temporary delegations), there
are numerous viable variations.

There are severals delagation models for the role-graph model: RBDM96, RBDM0, RBDM1,
PBDM0, PBDM1, PBDM2, and RDM2000, each with different combination of character-
istics [WO06].

2.5 Administration Model

There are various models for the task of managing an access control system. Sandhu
and Samarati [SS94] have identified the differences and divided them into five different
categories:

Centralized There is a single user or group that can grant and revoke permissions.

CHAPTER 2. PREVIOUS WORK 17

Hiearchical Administrators can delegate privileges to other adminstrators. There is a
central authority that grants the initial permissions. The model can be applied to
accomodate organizational structures.

Cooperative Access to a resource can be configured with special authorization require-
ment. Single entity alone cannot access the resource, but cooperation of multiple
authorized entities is required.

Ownership The user that creates a resource becomes its owner. The owner alone can
grant and revoke permissions to the resource.

Decentralized Decentralized authorization is an extension of the ownership authoriza-
tion. The owner of a resource can authorize other users to administrate the accesses
of the resource.

2.6 Semantic Web

Currently, the web is constructed from a interlinked set of human readable documents.
Due to lack of artificial intelligence the contents of the web cannot be interpreted by
machine. For instance, when searching for information, a search engine is able find the
documents that contain the answer, not the answer.

The objective of semantic web is to transform the web into a form that is both human and
machine understandable. As a solution, the fundamental idea is to put explicit meaning
to information, which makes it machine processable. Information is to be presented with
utilization of common metadata libraries. [Con04a]

World Wide Web Consortium (W3C) is promoting the mobilization of semantic web tech-
nology. In their vision, semantic web is achieved with a layered stack solution (Figure 2.5).
RDF and OWL specifications have been suggested as mature recommendations.

2.6.1 Resource Description Framework

Resource Description Framework (RDF) has been developed to enable metadata interop-
erability. The purpose of RDF is to promote encoding, exchanging and reusage of struc-
tured metadata. RDF is built to be both machine and human understandable language.
RDF/XML is the transferable format of RDF documents. [Con04c]

RDF Schema is a simple meta modelling language. It has simple definitions for classes,
properties, restrictions and datatypes. [Con04b]

CHAPTER 2. PREVIOUS WORK 18

Figure 2.5: Tim Berners-Lee’s Semantic Web Layers [KM01].

Subject Object

Predicate

Figure 2.6: Triple describes a semantic relation between two resources. Triple contains
fields: Subject, Predicate, and Object.

2.6.2 Web Ontology Language

Web Ontology Language (OWL) is a semantic language proposed by W3C. OWL comes
in three different versions: Lite, DL (Description Logics) and Full. OWL Full can be
seen as an extension to RDF, as it subsumes all features of OWL and RDF languages.
It maintains maximum expressiveness and syntatic freedom of RDF. The problem with
OWL Full is that it does not have computational guarantees for reasonable inference
usage. OWL DL contains all OWL Language constructs, but has constraints in the usage
of the language constructs and RDF features, for instance, a class cannot be an instance
of another class. It is designed to support existing description logics, and has properties
that are desirable for reasoning systems. OWL Lite is a set of basic OWL Language
features, such as classification and basic constraint features. It aims for simplicity and
easy adoptability. [Con04a] [DSB+04]

2.6.3 Triple

In semantic data structures, all information is described with statements. A collec-
tion of statements form a graph. Statement is the fundamental basic primitive be-

CHAPTER 2. PREVIOUS WORK 19

hind the semantic graph model. A statement states a relationship (edge) between two
resources (nodes). A triple is a 3-tuple that implements three fielded statement: <

Subject, Predicate, Object >. Often, the words triple and statement are used inter-
changeably as triple is established as the default data structure in semantic graph models.
Subject is the member of the statement that defines who we are talking about, predicate

describes what is the relationship between subject and object, and object is the target of
the statement. See Figure 2.6.

There is a small difference in the meaning of the term relation in the context of semantic
graph compared to its semantics in mathematics. In mathematics, a relation means the
set of all the statements of a predicate. In semantic graph context, a relation is a single
individual statement that describes relationship between two entities.

2.6.4 Query Languages

The emergence of RDF Recommendation has spun up several RDF Query Languages, such
as SPARQL, RQL, SeRQL, TRIPLE, RDQL, N3, and Versa. A RDF Query Language is
a formal language used for querying RDF Triples from a RDF Triple Store. Triple Store
is database for triples. [HBEV04]

The queries in RDQL and SPARQL languages are similiar to the syntax of SQL. For
example: SELECT ?s WHERE {?s, <rdfs:label>, "foo"}; returns all resources with
label “foo”. There is a triple pattern specified in WHERE clause. It defines the form and
shape of resources to search in the graph. [PS07]

2.6.5 Ontology

Ontology is a branch of metaphysics that deals with the nature of being. Software en-
gineering borrowed the term to give a name for formal specification of how to represent
concepts. The goals of using ontologies are promotion of shared understanding, inter-
operability between systems, communication, reusability, and reliability. [Roc03] [UG96]

Uschold and Gruninger [UG96] have identified that the level of formalism in ontologies
varies, and have categorized them roughly into four groups: highly informal, semi-informal,
semi-formal, and rigorously formal. Concepts of highly informal ontology are expressed
loosely in a natural language. In the opposite rigorously formal ontology, concepts are
defined with formal semantics, theorems and proofs.

Roche [Roc03] has classified ontologies to four categories based on their purpose and scope.
See Figure 2.7 for an example.

CHAPTER 2. PREVIOUS WORK 20

S
p

e
ci

liz
a

tio
n

Meta -Ontology
Object Class Relation

Generic
OntologyReliability Velocity Mass

Domain
OntologyEngine Pump Pipe

Application
OntologyShape

Graphics
Node

Graphics
Model

Ontology
Class :

Example concepts :

D
e

p
e

n
d

e
n

cy

Example
Ontology :

Layer 0

Physics

Plant Modeling

3D Modeling

Figure 2.7: The figure illustrates ontology classes with example ontologies.

Meta-ontology Meta-ontology is also called representation ontology. It defines vocabu-
lary for building other ontologies, e.g. class, relation, property, restriction, etc. . .

Generic ontology Generic ontology defines generic concepts of the world, e.g. concepts
related to mathematics, physics pheomena, etc. It is independent from domain and
application ontologies, and can be used to support them. Generic ontology is highly
reusable and promotes inter-operability.

Domain ontology Domain ontology is directed to a particular domain of concepts, e.g.
diagram modeling, simulation flowsheets, medical imaging, etc. . .

Application ontology Application ontology is an ontology that aggregates concepts
that are used to accomplish a specific task. Application ontologies are not par-
ticularly reusable.

2.7 Policies

Large distributed computer systems need automated management of resources. Policies
enable administrators to create high-level rules about the operation of the system. Policy
systems are used in the fields of access control, configuration management, performance
management, monitoring, security management and network routing.

Access control lists configure explicit access rights of resources. Instead with policies, users
determine rules and conditions under which an action is allowed. Policy languages have
mechanisms for resolving conflicts that occur from contradictory policy rules.

Policy languages have authorizations and obligations. Authorizations are “licenses” to
perform actions, obligations are “duties” to perform action. Obligations are used with

CHAPTER 2. PREVIOUS WORK 21

agent systems.

2.7.1 What is a Policy

Policy is defined in dictionary as ’the plans of an organization to meet its goals’ (in
reference [MS93]). Policies are verifiable, extendible, recycleable, and efficient rules of
operation. Policy is a very wide term, and within computing systems there are various
definitions about what a policy is.

An example of a policy rule:

It is permittable for actor X to perform action Y in context Z

Moffett and Sloman [MS93] identifies policies with various properties. There are two levels
of policies: Management action policies and Policy about management action

policies (PAMAP).

Management action policies are regular policies about the management of objects. They
are persistent rules that define a set of subjects to achieve goals or actions on a set of
target objects. Actions are operations in the system that can be performed by subjects
on objects. Goals are high-level objectives that define what is wanted as an outcome of
the policy. A goal does not specify how the objective is achieved. PAMAP policies are
rules about regular policies; how they must and must not coexist.

There are four kinds of policy modalities: positive imperatival (obliging), negative imper-

atival (deterring), positive authority (permitting), and negative authority (forbidding).
Authority policies define actions that subjects are either allowed or not allowed to per-
form. Policy based access control systems operate with authority policies. Imperatival

policies pose responsibilities to subjects. They cause actions to be executed. Positive im-
peratival is an obligation to which a subject is bound to perform an action. Subjects are
assumed to be automated agents that are obedient and well-behaving. Negative impera-
tival is a deterring, wherein the subject is given a dispensation to carry out an obligation.
Management systems utilize both imperative and authority policies.

Policy constraints are attributes that determine the applicability of the policy. Constraints
are based on properties of the system: for example: duration, date/time, or condition.
For example, a deposit action in a bank is constrained to be permitted only during the
opening hours of the bank.

CHAPTER 2. PREVIOUS WORK 22

Imperatival
Policies

Authority
Policies

Policy Subject
(Agent)

Reference
Monitor

Target
Object

Initiated
Action

Initiated &
Authorized

Action

Figure 2.8: The roles of imperatival and authority policies. [MS93]

2.7.2 Policy Conflicts

Moffett and Sloman [MS93] have identified set of cases where policy overlap poses possi-
bilities for conflicts.

Positive-Negative Conflict of Modalities Conflict of Modalities occurs when sub-
jects, objects and goal/action have a direct overlap, but the sign is different. For
example, one policy states that X is allowed to do action Y on Z, and another states
that X is forbidden to do action Y on Z.

Conflict between Imperatival and Authority Policies Imperatival and authority pol-
icy conflict appears when subjects, objects and goal/action overlap, but the authori-
ty/imperatival modality is in conflict. For example, X is obligated to perform action
Y, and X is forbidden to perform action Y.

Conflict of Duties Conflict of duties occurs in the cases where two policies have over-
lapping subjects and objects with actions that have been defined as conflicting upon
the same object. The problem can also be seen as a failed separation of duties (See
Subsection 2.2.3).

For example, a PAMAP policy handles the separation of duty by stating “the same
user is not allowed to place and approve orders on products”. Now, conflict of duties
emerges if there are two policies that state “subject X is authorized to place orders
on products” and “subject X is authorized to approve product orders”.

Conflict of Interests In some scenarios when two policies have the same subject there
is a possibility for conflict of interests. For example, an investment bank gives
investment advices to one client and takeover advices to another client. Takeover
advices could be influenced by the investment advices that were given to another

CHAPTER 2. PREVIOUS WORK 23

client. Conflict of interests can be prevented with PAMAP policy that declares the
scenario as conflicting.

Multiple Managers When objects of two policies overlap, there is a possibility for mul-
tiple managers conflict if the goals of the two policies are incompatible. For example,
policy X authorizes to pause process Z, and policy Y is obligated to schudule events
to the same process. There is a conflict if the two policies are activated simultane-
ously.

Self-Management Self-Management situation appears when there is a policy where a
manager is managing herself. This can be a conflict in some cases. For instance, if
a manager approves her own expenses.

2.7.3 Resolution of Conflicts

There are some suggestions proposed by Moffett and Sloman [MS93] about resolving the
conflicts.

� Conflicts are prevented in the policy language or during compilation.

� Inconsistencies are detected off-line by automatic proof systems.

� Potential conflicts are detected on-line in advance and prevented.

� Conflicting actions are detected as they occur. Post-detection reaction is an application-
specific decision. For instance, application can either cancel other actions, log warn-
ing of the conflict, or have user-interface dialog to resolve the situation.

To resolve direct positive-negative conflicts Moffett et al [MST90] suggests two-level pri-
ority scheme. The scheme follows Denial Takes Precedence (DTP) policy. All explicit
authorities are always positive, and therefore conflicts are impossible.

In Rei policy language, policies consist of policy rules, and meta-policies. Meta-policies
are policies about policies. They describe how policies are interpreted. When the system
comes across two conflicting policies, it attempts to find appropriate meta-policy in order
to find a resolution. Meta-policies have two methods for controlling policies. [KFJ03]

First, priorities can be defined between policies and between policy sub-components, policy
rules. For example, a meta-policy specifies that head office policies always override local
branch policies in case of conflicts.

CHAPTER 2. PREVIOUS WORK 24

Second, with meta-policies, it is possible to set negative/positive precedence to modalities
of actions, subjects, and policies. For example, a meta-policy states that in conflict resolu-
tion situation, inside policy X, subject Y has negative precedence. Meta-policy precedence
configurations can also be partially ordered, and the ordering can be configured for each
policy separately. Also, without explicit ordering, there is a default ordering for meta-
policies: the highest priority is on actions, the second highest priority is on rules about
subjects, and finally the default meta-rule policy is used.

2.7.4 Policy Languages

Policies are used in access control systems as well. There are several policy based access
control systems, such as: Rei, KAoS, and Ponder. Rei and KAoS are access control
frameworks with semantically rich policy representations. Ponder is a more generic access
control policy language that has closer to the ground, programming language, approach.
[DDLS00]

Rei

Kagal and Joshi [KFJ03] have developed a semantically rich access control framework,
Rei. Its ontology is built upon RDFS concepts. Rei has been designed to support domain
specific constructs – it allows developers to extend Rei with application specific information
that the engine has no prior knowledge of. Rei is strongly bound with logic languages as
its implementation is based on Prolog programming language.

Rei has a highly agile conflict management mechanism. Policies can have contradictions.
Conflicts can occur and they must be solved at runtime. Rei contains several constructs
for solving conflicts (See Subsection 2.7.3).

Roles and groups are left outside the scope of Rei ontology. They are considered as domain
specific extensions.

KAoS Policy Management for Semantic Web Services

KAoS is platform-independent service policy framework and language. Policies were orig-
inally represented in the ontology languages DAML+OIL, but now in OWL DL. KAoS
uses Java Theorem Prover (JTP) for inference. Inference is used for evaluating the policies
that are applicable for an action. See Listing 2.1 for an example of KAoS policy definition.
[UBJ+04]

CHAPTER 2. PREVIOUS WORK 25

Listing 2.1: An example of KAoS Policy Definition in DAML[TBJ+03]

<?xml version="1.0" ?>
<daml :Class rd f : ID= E x a m p l e A c t i o n ">

<rdfs:subClassOf rdf:resource="#EncryptedCommunicationAction" />

<rdfs:subClassOf >

<daml:Restriction >

<daml:onProperty rdf:resource="#performedBy" />

<daml:toClass rdf:resource="#MembersOfDomainA" />

</daml:Restriction >

</rdfs:subClassOf >

<rdfs:subClassOf >

<daml:Restriction >

<daml:onProperty rdf:resource="#hasDest inat ion " />

<daml:toClass rdf:resource="#notMembersOfDomainA" />

</daml:Restriction >

</rdfs:subClassOf >

</daml:Class >

<policy:PosAuthorizationPolicy rdf:ID="Example">
<policy:controls rdf:resource="#ExampleAction" />

<policy:hasSiteOfEnforcement rdf:resource="#ActorS i t e " />

<policy:hasPriority >10</ policy:hasPriority >

<policy:hasUpdateTimeStamp >4237445645589 </ policy:hasUpdateTimeStamp >

</policy:PosAuthorizationPolicy >

type auth+ FileAccess(subject s, target exerciseFiles) {
action read;
when

Time.between(0700, 1900) and
Time.between(’mon’, ’fri’);

}
inst auth+ P1 = FileAccess (”processor/Green”, ”NodeServer/StudentFiles”);

Table 2.3: An example of Ponder policy language [TBJ+03]

Ponder

Ponder is a generic, declarative object-oriented policy language that has been designed for
security and management policy purposes. Role-based access control is used for subject
management. Instead of permissions, roles group policies. Domains are used for describing
grouping of objects (See Subsection 2.9.5). The language has expressional constructs,
such as, delegations, meta-policies, events, and constraints. Table 2.3 has an example of
a Ponder policy expression. [DDLS00]

CHAPTER 2. PREVIOUS WORK 26

2.8 Concept Propagation

In the access control systems of filesystems, when user sets a permissions on a directory, the
permission propagates further to files and sub-directories. The same applies to semantic
data structures where users want to set permissions on containers and have them to
propagate to the contents. There must be rules to describe how the propagation should
proceed. In this section we discuss some ideas about propagation rules based on concept
level definitions.

2.8.1 Concept-level Access Control for the Semantic Web

Qin and Atluri [QA03] have introduced a concept-level access control for semantic web.
In their model, permissions are set on concepts in ontologies. Instances do not have
permissions, instead they inherit them from their respective concepts.

The permission is a 4-tuple < subject, sign, right, object >. The subject can be user
identity, credential, IP-address, etc. The sign is either positive or negative. The permission
is read, write, create or delete. The object is expressed with a RDFPath, and it can be
an ontology, a concept or a set of concepts within an ontology.

They make a note that permissions should propagate among the concepts based on the
relations between them (for instance: inheritance, equivalence, part/whole, intersection,
union, complement). Their propagation mechanism requires that the relations are classi-
fied. There are three classes: Inferable Relationship (IR), Partially Inferable Relationship
(PIR), and Non-Inferable Relationship (NIR). A relation that is classified as infereble,
for instance Equivalence, denotes that instances of the domain concept can be inferred to
the instances of the range. NIR relation, for instance Complement Of, implies that the
instances of a concept (in domain and range) have nothing in common. There is a set of
propagation rules that make resolutions to conflicts based on the classification of relations.
For example, a permission would propagate IRs, and block propagation from NIRs.

2.8.2 Lenses

There is a vocabulary called Fresnel [BLP05] for RDF that aims to display the graph in a
human-friendly manner. It has two main concepts: lens and format. Lens describes what
to display in a graph, and format how to display the graph. Format is based on Cascading
Style Sheets (CSS).

Lenses are used as viewpoints to the graph, and are used by browser applications to select

CHAPTER 2. PREVIOUS WORK 27

the information that is interesting to the human user. Lenses have selectors which define
the domain, instances and classes, which the lens is applicable to. A ShowProperties

configuration defines whether relations and properties are to be shown or not. To display
related instaces, there is a sublens configuration. It determines which relations to follow
in order to show structural views. It is also possible to build recursive lenses with sublens
configurations. A Purpose configuration aids the browser to choose which lens to use for
a particular resource.

The idea behind lenses seems applicable to other problems as well. If lenses were properly
applied they could be used for describing the structures of concepts, and thus for prop-
agations. Lenses have enough expressive power to pick out individual properties, and to
propagate to relevant sub-concepts with use of sublenses.

2.8.3 View

OPC Foundation has been working on Unified Architecture (OPC UA) specification. The
objective of OPC Foundation is to provide specifications to promote interoperability be-
tween data systems. The forthcoming UA specification combines a set of older independent
specifications under one common architecture. The older ones consist of specifications such
as: Data Access (DA), Historican Data Access (HDA), and Alarms and Events (AE). The
internals of the new UA specification are based on a graph model, nodes and relations.

UA graph model has a concept called View, which is a presentation of the graph intended to
specialized clients, for example, maintenance clients, engineering clients, etc. The purpose
of the view is to reveal an excerpt of the address space. View only provides information
needed for the purpose of the client and hides other unnecessary information. The idea of
view is similiar to lens. [OF06b]

2.9 Contexts

Contextualized data refers to data whose contents vary according to the context. The
context can vary from, for instance, changes in time to changes in security settings. [MK03]

The object field of a permission traditionally refers to a distinctive object. In graph model,
having a single edge or node as the object is too fine level for practical usage, and therefore
a method for grouping multiple elements together is required, and this is where contexts
can be utilized.

A problem with contexts is how to describe them in the graph model. Should a context

CHAPTER 2. PREVIOUS WORK 28

A B
P

P

B
A

rdf:Statement
rdf:type

rdf:predicaterdf:subject
rdf:object

Figure 2.9: The statement on the left (A, P, B) is expressed with a reified statement
on the right.

be defined using the constructs that build up a graph, nodes and edges? Or perhaps, use
data structures that are external to the graph.

2.9.1 Reified Statements

Reified statement refers to a mechanism in RDF that describes statements (See Subsec-
tion 2.6.3) in the graph [Con04c]. The name of the object is rdf:Statement, and it has
three outbound relations: rdf:subject, rdf:predicate, and rdf:object. For example, in order
to describe a single triple, four relations are required (See Figure 2.9).

To use reified statements for describing contexts seems to be rather impractical [MK03].
Contexts consisting of statements would multiply the number of triples. This mechanism
does not address the issue how to put contexts based on statement objects into another
context without endless chain of contexts. Also, making database queries to reified state-
ments with query languages is inconvinient and inefficient.

2.9.2 Quads

Quads have been developed as a solution for mapping between statements and contexts.
It is an extension to triple, wherein a fourth field refers to a context: <subject, predicate,
object, context>. [MK03]

As fourth field allows to refer only to one context, it raises the question how to describe
intersection of contexts. For instance, if a statement is seen as a part of two contexts,
the context field can only refer to either one. There is also an indexing implementation
specific issue how to create reverse references from context to the statements.

RDF Gateway [Int03] is a RDF triplestore2 that supports contexts with quad based state-
2Actually it is a quadstore

CHAPTER 2. PREVIOUS WORK 29

ments. Access of statements is controlled by setting permissions (< context, owner, right >)
to the contexts. The owner field is either a user or a role. The right is allows/deny read-
/write/delete/security3. The granularity of the model is on individual statements.

2.9.3 Object-oriented contexts

Object-oriented context is a context mechanism that is not based on statements but instead
on objects. The benefit of object-oriented context is that, unlike quads, it does not require
low level changes to databases and query languages, and still sustains compability with
existing triple based systems. The downside is that the granularity is more coarse grained
compared with statement level contexts. [MK03]

2.9.4 Named Graph

Carroll et al [CBHS05] have proposed a variation to RDF, called named RDF graphs.
Named graph is a discrete object that has a name, an URI reference. It is defined as
binding between a name and a set of statements. The name can be referenced from inside
the graph, outside the graph, or not at all. Normally, the imported RDF documents are
melted into the triple store and cannot be distinguished afterwards. Named graphs are
naturally compatible with RDFs. For instance, imported RDF Documents become named
graphs. The name for the document is acquired from the retrieval location of the RDF
document.

Named graphs enable the capability of annotating sub-graphs with metainformation. For
instance, relations between graphs (e.g. subGraphOf, or equivalentGraph). Graph an-
notations are also useful in: data syndication (keeping track of provenance information),
restricting information usage (e.g. information about intellectual property rights), access
control, signing graphs, and ontology evolution and versioning.

Named graphs make digital signatures of contexts possible. Two graphs are required to
sign a context since the signature cannot be located in the same named graph as the graph
with the signature. On the other hand, the second graph is typically accompanied with
other related metadata, such as authority, authority certificate, signature method, ect.

3right to modify permissions

CHAPTER 2. PREVIOUS WORK 30

2.9.5 Domains

Moffett, Sloman and Twidl [MST90] [SM90] [Slo94] discuss domains which are used as
an instrument for managing objects in large scale information systems. Domains provide
a way to do multiple parallel views to abundance of objects. Basically, domain is a
container of objects. The use of domains allows practical approach for large scale object
management. In access control and policy management configurations, a domain is used
as the object of a permission in behalf of a group of objects.

Domain Relationships

There are four kinds of domain relationships (Figure 2.10). A domain that is a part of
another domain is (a) a subdomain of the parent domain. Objects of a sub-domain are
indirect members of the parent domain. If two domains have one or more objects in
common they are (b) explicitly overlapping. In case there are two objects in two domains
that represent the same real world entity the domains are (c) implicitly overlapping.
Domains that do not share any objects are (d) disjoint.[SM90]

Sloman [Slo94] suggests that policies referencing domains should have an option whether
the policy applies to subdomains as well. He makes also a note that, for efficient propaga-
tion, evaluation domains should hold references to all applying policies. This is to avoid
computational burden when domain parent hierarchies must be traversed in order to find
out all effective policies.

2.10 Semantic Access Control

In this section, we review two access control models in the domain of semantic web.

2.10.1 Semantic Access Control Model

Yague et al [YMnLT03] notes that the separation of access control management and certifi-
cation of attributes is widely accepted as scalable and flexible solution. In semantic access
control model (SAC) [YGMn05], identification of authorization is based on attributes that
the users possess. The attributes are based on semantic properties of the resources. Ac-
cess policies define a list of properties that are required. Users are not required to identify
themselves, only to provide proof of their attributes. Since the model is designed for open
use, the user attributes must be digitally certified. The benefit of the open model is that

CHAPTER 2. PREVIOUS WORK 31

Domain 1 Domain 2

Domain 1

Domain 2

Domain 1 Domain 2

Same As

Domain 1

Domain 3Domain 2

(d) Disjoint Domains

(b) Explicit Overlapping Domains(a) Subdomains

(c) Implicit Overlapping Domains

Figure 2.10: The relationships of domains

users do not need to register themselves.

2.10.2 RDF Triple Store Access Control

Dietzold and Auer [DA06] have analyzed requirements for an access control of RDF Triple
Store and presented a framework for one. The work is based on an application scenario
of Semantic Wiki. The granularity of the access control should work with different levels:
statement, resource, and all instances of a class. They note that the efficiency of an access
control is more important than its expression power.

There are three basic actions in triple stores: Reading, adding and removing of triples.
The result set of a read query is filtered to hold only the allowed triples. Triples that are
not allowed to be modified are left unchanged in add and remove actions.

In RDF Triple Store there is a query engine which processes incoming queries. The engine
operates the data storage with the previously mentioned actions. With access control,
the view to the data is user dependant; an intersection of allowed and existing triples.
Dietzold and Auer presents virtual models to be used with the query engine. They are
modified copies of the real the graph model, and are created and modified by the access
control mechanisms.

In the framework there are three different types of models:

CHAPTER 2. PREVIOUS WORK 32

- Session Model: The model holds information about active sessions.

- User Model: Contains the data in the view of the user. It is the real model after
filtering.

- Maintenance Model: This model contains the information required by access
control mechanisms, for instance, account information, rules, etc.

2.11 Principles of Design

Designing an access protection mechanism to an information system has proven to be a
difficult task. Design and implementation flaws have rendered numerious systems insecure.
There are no formally proven methodologies that systematically excludes security flaws in
implementations. Therefore when implementing a security system, one can seek aid only
in best known practices. Saltzer and Schroeder [SS75] have described eight architectural
principles 4 for design of access control systems. Their observations are based on practical
experience. Even though the article was published relatively long time ago, the principles
are still valid.[Ben06]

Economy of mechanism Keep the design as simple and small as possible. This well
known principle applies all around in software technology, but it is essentially im-
portant in security mechanisms. Keep to pertinent issues while designing a security
model. Determine the relevant requirements. Solve only a well-defined problem.
Do not work out irrelevat or related problems. Overdesigning leads to larger soft-
ware components which contain more information execution paths. They are more
difficult to evaluate with line-by-line code reviews. Rather, create small modular
components which are easier to test. [SS75]

Fail-safe defaults This principle was suggested by Glaser in 19655. It promotes con-
cervative closed policy, accesses are denied by default and granted with explicit
configurations. The argument is that the alternative, open policy, gives wrong psy-
chological base for the users. Users should not give reasons why access is restricted,
instead they should state why access is permitted. In large systems, some resources
will be misconfigured, therefore denial is safer than allowing accesses. Also, in case
there are configuration, design or implementation flaws, they are more likely to reveal
themselves if access is falsely denied than granted.

4In the following list, the principals identified in [SS75] are the first eight ones.
5According to references in [BCG05]

CHAPTER 2. PREVIOUS WORK 33

Complete mediation The access control should be uniform and applied thruout the
whole system. Access to every resource must be evaluated for authority. This
brings out system-wide perspective to the access control, which normally contains
initialization, recovery, shutdown and maintenance. The process enforces the devel-
opment towards infallible security system, since the mechanism must be used for
every request.[SS75]

Open design The access control design should not be a secret. The security must not rely
on the ignorance of the users. Wide spread security systems are subject to reverse-
engineering, hiding security flaws cannot go on indefinitely. Security by obscurity
simply delays the unveiling of the vulnerabilities. The design must be open for public
scrutiny and criticism.[Bar64] [Ben06]

Separation of privilege When applicable, protection of a resource should depend on
two separate keys instead of one. The reasons for this was pointed out by Roger
Needham in 1973 [Nee72]. Once two keys are physically separated and assigned,
two different entities can be made responsible for them. Now, no single incident
can cause breach of protection. This model is used in bank safe-deposit boxes. In
computer security, this model applies to the situations where two or more conditions
must be met to gain accesses. Separation of duties in RBAC is an example of this
principle (See Subsection 2.2.3).

Least privilege Every user or software agent should operate using the minimum privi-
leges that are required to accomplish a designated task. The principle reduces the
amount of damage that can occur from human errors or intentional attacks.

Least common mechanism Keep the amount of mechanisms common to more than
one user minimal. Shared mechanisms (e.g. global variables) and runtime memory
structures contribute to potential information exposures. Applying the principle
reduces the risk of information leaking. If given a choice between implementing a
procedure that is executed with supervisor privileges and a library function that can
be ran with user privileges, choose the latter one. [Pop74] 6

Psychological acceptability Give the users incentives for adopting the security model.
Have inviting and easy to comprehend user interfaces and application programming
interfaces (APIs). If security features are too difficult to adopt they are prone to
be misapplied or rejected. Ensure the user is given feedback about the effects of

6Reference in [SS75]

CHAPTER 2. PREVIOUS WORK 34

potential choices. Having clear security system enables users to think over security
aspects in addition to working with their system.

Privacy Considerations All protected resources should be considered as private. The
amount of private data that is exposed to other software entities should be kept
minimal. For example, when a software component is handed over a user profile,
the record is reduced to contain the bare minimal required information. The overall
security may be improved by the cumulative effect of the implementation of this
principle. [Ben06]

Failing securely According to Viega and McGraw [MV01]7, complicated systems should
be planned ahead for failures. Systems should have built-in fail modes. When
multiple systems fail in a way that they cause unexpected behaviour, the system
may become open for malicious attacks. Upon failure, undo changes and revert to
last secure state. Confidentiality and integrity of a system must remain intact even
though availability is lost[BCG05]. If failing system reveals confidential information,
it might open doors for new attacks.

For example, when an automated teller machine (ATM) fails, it shuts down in a
controlled way and stops feeding further data (or money) [Sch00].

7Reference in [Sch00]

Chapter 3

Implementation Environment

In this chapter, we present the software environment and the platform to which the access
control model in this thesis is built on. We give an introduction to the meta-ontology
Layer0 in Section 3.2, and to the server-client hierarchy in Section 3.3. We also present
some of the internal mechanisms, such as, transactions (Section 3.4), acquire mechanism
(Section 3.5), viewpoints (Section 3.6), and ontology mappings (Section 3.7).

3.1 Introduction

The work in this thesis is implemented on a platform called Simantics. It has already
been introduced in the Section 1.1. ProConf is the user interface platform of Simantics.
It is based on Eclipse Rich Client Platform [BC03] which provides plug-in architecture for
building extendable applications.

3.2 Layer0

The internal data structure of Simantics is based on a semantic graph data model. Layer0
is a meta-ontology (See Subsection 2.6.5) that defines all the base concepts. It is similar
to RDFS/OWL, but it has been designed with different requirements. See Appendix A
for similitudes between Layer0 and RDFS/OWL.

The data model in the enviroment is a directed graph. Nodes in the graph are called
resources1, and each of them is equipped with a unique resource identifier. Edges are

1also called “entity”

35

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 36

semantic relations, which denotes that they are equipped with a predicate which describes
their semantic meaning.

3.2.1 Classes and Instances

There are three base classes in Layer0: Property, Relation and Object. All other classes are
derieved from them. Inheritance is indicated with Inherits relation, which implies that
the sub-class (domain) acquires its the restrictions of the parent (range). The Inherits
relation is transitive.

Named Class is a type definition and classification of resources. All class definitions are
instances of Named Class and are inherited from one of the base classes (Figure 3.1).
Ontology is a library that aggregates Named Classes.

Instances are manifested with Instance Of relation from the resource to a corresponding
Named Class. Multi-instantiating of a resource is also possible as long as restrictions of
the classes do not conflict.

«object»
Class

«object»
Object

«object»
Named Class

«object»
Entity

Instance Of

Instance Of

Instance Of

«relation»
Relation

«property»
Property

Instance Of

Instance Of

Figure 3.1: The super classes Relation, Object and Property are inherited from the
primitive type Entity. All class definitions are instances of Named Class. Class object
is super-class for resource classification types.

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 37

One of the requirements in Simantics has been computational efficiency which cannot be
quaranteed with logic based ontology languages such as RDF. There is a difference in the
concept of class and the way classification is done in Simantics and RDF. In Simantics,
class of a resource is always indicated explicitly with appropriate Instance Of relation. The
class of an instance can be evaluated with a single relation read operation, and does not
require description logics. In contrast, in RDF/OWL languages, a resource is considered
as an instance of all classes, known and not known, whose classification the resource suits.

3.2.2 Relations

Relation classes are sub-classes of the class Relation. In contrast to RDF/OWL they
are also instantiated. In Simantics this feature is called relation instance property. This
reflects to the predicate field of the statement, which is a reference to an instance of the
relation class, not the actual class itself. In most cases a default instance is sufficient
and is used as the default predicate. On the other hand, a customized relation instance
can be used for various purposes, for instance, as an auxiliary property or a meta-relation.
Figure 3.2 shows an example use of relation instances, where properties in relations provide
position field in a context of a library.

position : int = 1

«relation»
X : Part Of

position : int = 2

«relation»
Y : Part Of

X:Part Of

«object» Library1 : Library

«object»
Object1 : Object

«object»
Object2 : Object

Y:Part Of

Figure 3.2: Example about ordering of two objects using relation instances. Object1
has position 1 and Object2 position 2. X and Y are both Part Of relations (instances
of Part Of relation class). Both are used as Part of relation from the objects to the
library. The difference is that X, the relation instance, has property position = 1 and
Y position = 2.

3.2.3 Properties

Properties are resources that describe primitive values (integers, strings, ect. . .). The
primitives are called literals. Properties can be either structural or simple, array or scalar.

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 38

Structural properties form tree hierarchy that describe complex data types. Property
class describes the semantics and restrictions that are imposed on the property instances.
Property classes are sub-classes of named class Property. Literal values are manifested
with Has Value relation from the property to the literal (See figure 3.3 for an example).
In an ontology, each property class has a respective Has relation class. For example, there
is Name property that describes name of a resource. For that, there also exists Has Name

relation class that indicates the relationship between resources and their corresponding
name property instances.

resource :Name

Has Name Has Value

�Resource X�

Figure 3.3: Example of Name property, Has Name relation, and literal value.

3.3 Server-Client Model

Persistent triple storing in Simantics is handled by ProCore database. ProCore servers
and ProConf clients form a tree hierarchy (See figure 3.4). The communication protocol
is the same between servers and between server-client.

3.4 Transactions

Modifications to the triple store are performed in transactions. The purpose of a transac-
tion is to have a controlled process for applying modifications. Figure 3.5 illustrates the
information flow of a transaction.

In the beginning of a transaction individual modifications are accumulated into a change-
set. For the duration of the transaction there is a write lock mechanism to prevent
conflicts. Changeset is a simple data structure that contains a list of triples to be added
and removed, and changes to literal values.

The changeset is commited to the store, and is evaluated by a set of rules and validators.
The goal is to keep the graph integrity intact regarding restrictions that are defined in
ontologies and software extensions. Rules participate in the transaction by adding or
removing triples. Validators either accept or reject the changeset. If any of the validators
reject, the transaction is canceled. Once the changeset is approved by all the validators,

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 39

ProCore

ProCore

ProCore

ProConf ProConf ProConf

Figure 3.4: An example of tree hierarchy of servers (ProCore) and clients (ProConf)
in Simantics.

1. Accumulate a changeset
2. Apply rules to the changeset
 Validate the changeset

3. Add the changeset

Changeset
* Collect changes :
triples and literals

Triples added

<subject , predicate , object>
<subject , predicate , object>
<subject , predicate , object>

Triples removed

<subject , predicate , object>
<subject , predicate , object>
<subject , predicate , object>

Literals changed

<variable , �value� >
<variable , �value� >
<variable , �value� >

+<subject , predicate , object >

+<subject , predicate , object >

+<subject , predicate , object >

-<subject , predicate , object >

-<subject , predicate , object >

-<subject , predicate , object >

<variable , �value� >

<variable , �value� >

Validators and Rules
* Rules participate in the
transaction by adding /removing
triples
* Validators either Accept or
Reject the changeset

Access control
validator

*User session
*Credentials

ProCore (Triplestore)

X

* Versioning : Changesets
are linked into a list of
revisions

Revisions :

Head 1.2

Changeset

Revision 1.1

Changeset

Revision 1.0

Changeset

<variable , �value� >

Individual
triple
modifications

Accept

Reject

Ontology
Mappings Rule

* Builds mapped
objects according
to mapping rules

Domain
Propagation Rule

* Propagates
domains according
to propagation
rules (viewpoint)

Figure 3.5: Information flow of a transaction

it is linked to the triple store as a head revision. Head represents the latest version of the
store.

Traditional database management systems (DBMS) have four key properties (ACID):

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 40

Atomicity, Consistency, Isolation and Durability. Transactions mechanism in Simantics
offers atomicity, consistency and isolation properties, but not durability. Atomicity is
achieved with mandatory locking mechanisms. Consistency is provided by validator mech-
anisms. Isolation is ensured due to the inherent structure of the triple store, which is a
list of revisions – only complete transactions are linked to the triple store. Currently,
durability property cannot be provided because transactions are not journaled nor stored
to persistent storage directly.

3.4.1 Triple Filter

There is a triple filter mechanism to evaluate read operations; whether the data is available
to the querier or not. Triples that do not pass filters are removed from the result set of
the query.

3.5 Acquire Mechanism

Simantics-environment has a mechanism that allows to define relations that acquire other
relations from object to subject. The mechanism operates with a specialized relation class
that implies that the relations of specified classes are acquired from the object of the
relation to the subject of the relation.

Relations that are of class Acquire Relations From inherit all relations that are defined in
the class with Acquire Relation Type relation. Figure 3.6 illustrates an example usage of
acquire mechanism.

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 41

Acquire Relations From

Acquire Relation type
Acquires Credentials

Member Of

Has Credential

Defined in ontology

Defined in instances

:Role

:User

:Credential
Has Credential

Member Of
Has Credential

Relation (:User , Member Of , :Role)
implicates that (:Role , Has Credential ,
:Credential) is acquired to :User as (:User ,
Has Credential , :Credential).

The definition implicates that Acquires
Credentials and Member Of relations acquire
Has Credential relations from their objects to
their subjects .

Figure 3.6: The upper diagram shows an example how Member Of relation is defined
in ontology to acquire credentials, and the lower how Member Of relation acquires
:Credential from :Role to :User. The acquired relation is drawn with dotted line.

3.6 Viewpoint

There is viewpoint concept which is similiar to the concepts lens and view introduced in
Section 2.8. A viewpoint is a perspective to the semantic graph model. It is a set of rules
customized for use with a specific task or client. The aim is to provide an excerpt of data
– data that consists only information that is relevant to the viewer.

There are many cases where the available data needs to be inspected in perspectives, such
as: graph is visualized in the user interface, object exporting, access control, propagation
rules, and cloning. See Figure 3.7 for cloning example.

Viewpoint consists of an ordered list of rules. There are two chains of rules for two
different queries: isAcceptable and isTraversable. Viewpoint query is based on evaluation
of its sub-rules, viewpoint rules. Rules are evaluated in order until there is a rule that has
an answer. In the case no rule has an answer, false is retuned by default. See Figure 3.8

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 42

Cloning Example

Original Pump Object Cloned Pump Object

Cloning operation in
Product Viewpoint

«object»
 : Pump

«object»
 : Engine

value : int = 15

«property»
 : Nominal Lifting Height

«object»
 : Access Label

«object»
 : Simulation

«object»
 : Symbol

Has Nominal Lifting Height

Has Engine

Has Symbol

Has Simulation

Has Access Label

«object»
Cloned : Pump

«object»
Cloned : Engine

«property»
Cloned : Nominal Lifting HeightHas Nominal Lifting Height

Has Engine

Figure 3.7: The figure shows a source and a result of a cloning operation. The cloning
operation is conducted with viewpoint that concerns about objects and properties of
product descriptions (here, lifting height and engine). In the example, Pump, Engine
and property Nominal Lift Height are cloned because they describe products.

Viewpoint

Viewpoint
Rule 1

isAcceptable (subject , predicate , object)

TRUE

FALSE

Viewpoint
Rule 2

?

TRUE

FALSE

?
... Viewpoint

Rule n -1
Viewpoint

Rule n
?

TRUE

FALSE

??

TRUE

FALSE

FALSE

Figure 3.8: The diagram illustrates the evaluation flow of query isAcceptible(subject,
predicate, object). Rules are evaluated in order until a statement is received. If no
rule has a statement for the statement, FALSE is returned. The same chain of rules is
inspected for every query.

for an example.

View is a sub-graph selected from a traversal of the graph. It is based on a viewpoint and
a start resource.

Viewpoint query answers to two questions, whether a statement is traversable and whether
the statement is acceptable. Acceptable denotes that the statement is part of the view.
Traversable indicates that the statement should be traversed over, whether it is acceptable
or not. In the case the statement is traversable but not acceptable, the view is discontin-

uous. For example, a viewpoint that selects all properties of a hierarchy and nothing else.
All structural relations would be traverable and leaf relations acceptable.

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 43

3.6.1 Formal definition

Let P denote the finite set of all Viewpoints.
Let R denote the finite set of all Viewpoint Rules.
Let Q denote the finite set of all Viewpoint Queries.
Let V denote the finite set of all Views.
Let E denote the finite set of all Entities.
Let S denote the finite set of all Statements.
Let B = {true, false}

Definition. A statement (s, p, o) ∈ S is a triple, where s, p, o ∈ E are the respective
members of the statement: subject, predicate, and object.

Definition. A viewpoint rule r ∈ R is a function r: S → B.

Definition. A viewpoint is a pair (t, a) ∈ P, where t ∈ Rm is a list of traversing viewpoint
rules and a ∈ Rn is a list of accepting viewpoint rules.

Definition. A viewpoint query qv ∈ Q is a function qv: S → B×B, qv(s) = (qv
a(s), qv

t (s)),
where qv

a(s) tells whether s is acceptable and qv
t (s) whether it is traversable. v ∈ V is the

viewpoint of the query.

Definition. A view is a pair (l, p) ∈ V, where l ∈ E is the start location, and p ∈ P is
the viewpoint.

3.6.2 Modelled Viewpoint

Modelled viewpoint is an ontology level specialization to the viewpoint. Modelled view-
points are defined with ontology concepts, as opposed to functions 2 in generic viewpoint.

There is a set of rules in a modelled viewpoint. Each rule applies to one of the three
categories: relation, type or instance, and are specified with a reference to the appropriate
class. As they are based on class references, there is a distinction between an explicit
reference to a class and an instance of a class. The former is specified with type and latter
with instance configuration. Instances and types are compared with the object field of the
statement, and relation against the predicate of the statement.

Each rule has one of the three results: traversable, acceptable or rejected. The viewpoint
queries isAcceptable and isTraversable are TRUE if there is a acceptable/traversable rule
for the type/instance, and acceptable/traversable relation. Both queries are FALSE if

2Java code

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 44

Figure 3.9: The image is a user interface screenshot of Modelled Viewpoint Editor
in ProConf. There are 9 cases of definitions for the viewpoint. In the example (default
viewpoint) all class definitions (Accepted Types → Entity) are visible to the viewpoint.
All instances (Accepted Instances → Object and Property) are accepted aswell. Rela-
tions Has Name are not traversed, nor accepted. As a result, all names properties are
hidden in this viewpoint.

type, instance or relation is rejected.

3.7 Ontology Mappings

The purpose of ontology mappings is to bind together objects of different but similiar
domains. A mapping ontology is a an ontology that specifies software based rules for
mappings between objects of domain ontologies (See Figure 3.10). Mapping mechanism
inter-links instances of the two mapped ontologies in accordance to the rules in the map-
ping ontology. The mechanism is implemented as a rule that participates in transactions
(See Section 3.4). Mapped instances can share properties and structure.

CHAPTER 3. IMPLEMENTATION ENVIRONMENT 45

Upper Ontologies
Upper Ontologies

Ontology A Ontology B

A-B
Mapping Ontology

Upper Ontologies

«uses » «uses »

«uses »«uses »

«uses »

Figure 3.10: An example of a mapping ontology. The A-B Mapping Ontology is a
bridge between the two domain ontologies Ontology A and Ontology B. It has software
rules and mapping relations that links the instances in the two domains.

Chapter 4

Design

In this chapter we discuss design requirements, constraints and choices for our access
control model. Before that, it is beneficial to review the problem statement introduced in
Section 1.3. Four key problems were identified:

� How to describe the contexts (sub-graphs) to which access rights apply to?

� How to describe objects and inter-object relations?

� How to propagate access rights in the graph including posterior propagations?

� How does the access control function with ontology-mappings?

4.1 Requirements

The requirements and constraints are derieved from the Simantics platform.

4.1.1 Business Goals

Goal Rationale

Shared platform and collaboration of dif-
ferent parties.

The system functions as common platform
on which different parties can collaborate
and develop.

Protection of immaterial assets Assets can be protected and shared to and
only to trusted partners

46

CHAPTER 4. DESIGN 47

4.1.2 User Groups

The following table contains the user groups identified as different user types of the ac-
cess control. The user classification is based on user categorization identified by Karhela
[Kar02].

User group User Classifica-

tion

Description Number

of users

Super user Kernel Developer Handles problem situations few

System administra-
tor

Kernel Developer Installs ontologies, access
control policies

few

Ontology designer Kernel Developer Creates ontologies. Binds ac-
cess control with ontologies.

few

Security administra-
tor

Model Configurator Supervices access manage-
ment.

few

Project Manager Model User Installs new projects. Se-
lects ontologies to be used
in projects. Creates roles
for project. Assigns users to
roles

Some

Designer Model User Creates, manipulates and
deletes objects.

Many

CHAPTER 4. DESIGN 48

4.1.3 Non-Functional Requirements

ID Name Description

NF1 Usability Access control must look and feel usable to the users.

NF1.1 Acceptability Access control must be simple enough to be accepted by
users.

NF1.2 Transparency For normal usage, the existence of access control must
appear transparent.

NF2 Configurability Sufficient expressional power

NF3 Security Business environment requires strong security

NF4 Performance Access control mechanisms must not encumber normal
usage

NF5 Discretionary Access control must be discretionary. Access control can
be taken into use when chosen to.

CHAPTER 4. DESIGN 49

4.1.4 Functional Requirements

ID Name Description

REQ1 Control of accesses Access to a resource can be controlled.

REQ1.2 Subject granularity The level of granularity of the subject of access
right is user/group.

REQ1.3 Object granularity The level of granularity of the object of access
right is relation.

REQ1.4 Privilege types The minimum set of privilege types are : read,
write, link, unlink,

REQ1.5 Permissions by authorized
entities

Permissions can only be issued by authorized
user. Authorized user is either the owner
or user that has been granted permission to
change permissions

REQ2 Access queries Access rights of a user on a resource can be
queried.

REQ3 Revoking Rights Access rights can be revoked

REQ4 Delegation of rights Users can delegate rights to other users

REQ5 Propagation Access configuration must propagate among re-
sources according to user’s wishes

REQ5.1 Posterior propagation Propagations must react to structural changes
that occur after initial propagation.

REQ5.2 Conflict free propagation Propagations must not produce conflicts.

REQ5.3 Propagation over map-
pings

Propagations must optionally be able to prop-
agate over ontology mappings.

4.2 Design Constraints

The following table contains constraints to the designing of implementation imposed by
Simantics environment.

CHAPTER 4. DESIGN 50

ID Constraint Description

C1 Language The software is run on Java J2SE 6.0

C2 Platform The software is based on Eclipse Plugin ar-
chitecture

C3 Graph Model The data model is based on Simantics archi-
tecture

C3.1 Semantic Model The semantic model is based on Layer0

C3.2 Transaction Model Transactions are based on Simantics archi-
tecture

C3.3 Server-Client Model Server-Client model is based on Simantics ar-
chitecture

C3.4 Inference Engine The platform does not have a logic engine

C3.5 Query Language There is no query language. There are no
random access queries.

C3.6 Query Format Queries are limited to graph traversing. Sub-
ject is mandatory. <?subject,−,− > and <

?subject, ?predicate,− > are the only query
formats available.

4.3 Design Evaluation

As seen in the Chapter 2, designing an access control model inspection to various aspects
is required. Existing technologies provide a whole range of design options. On the other
hand, requirements and constraints posed from the environment reduce the amount of
viable solution paths. This section discusses different design possibilities and their appli-
cability in the problem context.

4.3.1 Paradigm

Which access control paradigm to choose? There are no requirements or design constraints
that would exclude any paradigms presented in Section 2.2. Credential access control

CHAPTER 4. DESIGN 51

would be quite suitable solution for open distributed system, but the server architecture
of Simantics is closed and hierarchial. RBAC is commonly concidered mature and flexible
paradigm, and it is the most popular paradigm used today [YMnLT03]. RBAC seems a
valid selection because it follows corporate hierarchy which suits the user groups of the
target platform.

4.3.2 Open or Closed policy

The arguments for choosing closed policy are strong. The design principle “Fail-safe
defaults” (Section 2.11) favors closed policy due to many aspects. It forces all user groups
to take access control into account. For instance, ontology designer is forced to annotate
ontologies with support for access control definitions, otherwise newly designed ontologies
would be unusable.

Also, in case of configuration mistakes, problems are spotted immediately, as they render
the system unusable. In the opposing open policy, access configuration mistakes could
be left unnoticed which contributes to the overall vulnerability of the system. Although,
configuration mistakes can be reduced by giving the user appropriate tools for evaluating
access configurations.

However, having an open policy supports the requirement (NF5) for having optional access
control services. Open policy allows that the access control is left unused and is taken
into use in incremental steps.

Also, there is an extendability benefit in use of open policy. If the protection in access
rights is based on domain knowledge, a resource can, if so wanted, be protected from
changes in known domains while leaving relations in unknown domains open for modifi-
cations. Therefore resources could be annotated with unknown and future ontologies. In
the opposite model, all annotations would require explicit permissions. For instance, a
manufacturer has a datasheet of an engine. The datasheet object is protected from modi-
fications of concepts in a data sheet ontology, but the annotations of other ontologies can
be attached, such as customer’s review of the product. Whether this feature is desirable
or not is open for debate.

4.3.3 Delegation model

Privilege delegations were discussed in Section 2.4. Requirement REQ4 demands permis-
sion delegations. The complexity of the delegation is not specified, therefore even a simple
delegation model is sufficient.

CHAPTER 4. DESIGN 52

4.3.4 Administration policy

Different administration policies are discussed in Section 2.5. Simantics is intended as
a distributed and non-centralized collaboration platform. Therefore, for instance, differ-
ent companies working together in the same enviroment must be able to administer their
proprietary data independently. In this perspective, centralized and hierarchial admin-
istration policies are not viable. Also, there are no grounds for cooperative policy in
the requirements. Ownership policy suits to the intended user groups which are disjoint
independent parties. Decentralized policy is even more applicable when the delegation
requirement is taken into account.

4.3.5 Support for negative authority, Conflicts

Negative authority was discussed in Section 2.3, and policy conflict resolutions were dis-
cussed in Subsection 2.7.3.

Usage of policy languages such as Rei requires understanding of logic languages such as
Prolog. Non-functional requirement NF1 expects that the access control is simple enough
for users to adopt, therefore Rei cannot be used. The design principle phychological

acceptability (Section 2.11) also contradicts with the use of logic based languages.

The use of inference engines can pose performance hit to the server. In addition, in a
worst case scenario, inference engines can make incorrect reasoning in a hierarchial server
architecture where regions of the data may be partially hidden even to the access control
mechanism.

4.3.6 Authorization and Privileges

What kind of privileges are required and what kind of permissions to describe them? Very
basic requirements are derived from the requirements: privilege to read, to write, to own,
and to share ownership.

Semantic Access Control (Subsection 2.10.1) and Credential Access Control (Subsec-
tion 2.2.4) have permissions that are based on characteristics of the user and the ob-
ject. They seem promising new aspects to access control models, however there are no
requirements that would demand their usage.

In the context of this thesis simpler solutions are sufficient. Simpler solutions are also
backed up by non-functional requirements about simplicity (NF1) and acceptability (NF1.1).

CHAPTER 4. DESIGN 53

4.3.7 Concepts

Access control applies to all users of the system. The user type project manager (See
Subsection 4.1.2) deals with high-level objects that are understandable to regular user.
Therefore, for access configurations, these user groups must be provided with simple ob-
jects, not edges and nodes. Only Kernel Developers have deeper understanding about the
underlying data structures.

The propagation model presented by [QA03] (Subsection 2.8.1) is not viable solution to
the requirements at hand because it only deals with concept level access control and omits
instances.

Lens and view concepts are similiar to the concept of Viewpoint in Simantics. It could be
used for description of high-level objects.

4.3.8 Contexts

The primitive unit of information in the graph model is a triple. Even in rather average
sized use cases, triple stores may be populated with millions of triples. The notion of
annotating each triple with a distinct access label can be brought down due to numerious
reasons. Firstly, there would be a massive impact in the memory requirements. Secondly,
existence of myriad access labels is laborious to manage.

Context problem is how to bind random entities or statements into a context. Contexts
are required for access control because permissions can be attached to them. Contexts
were discussed in Section 2.9.

Quads (See Subsection 2.9.2) cannot be used because they are not supported in Simantics
triple model. Domains used as object-oriented contexts seem to be a promising solution.
Automatic propagations can be incorporated into the solution with a viewpoint descrip-
tion.

4.4 Discussion

The main problem fields are divided into four loosely coupled sub-problems. User man-
agement and access right model do not have as much novelty, as there is abundance of
previous work in that problem domain. Semantic graph based concept and context man-
agement are much newer fields as there is little research about those domains. We have
devised a design solution to each problem and discuss them separately in the following

CHAPTER 4. DESIGN 54

four chapters.

Chapter 5

Relation Restrictions

In this chapter, a permission model, Restriction Relation Based Access Control (RRBAC),
is presented. We present the ontology, give an example of its use, and in conlusion discuss
matters that came out with the implementation.

5.1 Introduction

RRBAC is designed as a permission model for semantic graphs. It follows open policy; ac-
cess is allowed unless there is a negative authorization to deny it. More specifically, access
is allowed unless there is a restrictive relation to constrain it. All the access relations in
this model are restrictive, they narrow the access. This strict rule excludes the possibility
for having relations that override accesses that are already in place. Although one way
access policy (reductive) makes the model conflict free.

All permissions are modelled with restriction relations (See Figure 5.1 for an example). A
permission (access right tuple) is a single statement; the subject determines the resource
whose access is limited, the predicate how much is limited, and the object the requirement
for the access. The access is constrained to those who possess the requirements (creden-

tials). A credential is an object that mediates the authority of a permission. They are
posessed by the principals of the systems, users and roles.

Most restriction relations are domain specific, and are defined in domain ontologies. The
definitions are based on concepts defined in Access Restriction Ontology.

The scope of RRBAC is restricted to permission modelling, although user and object
management have been taken into account in the design of the model. Chapter 8 discusses
the binding of RBAC and the credential model of this model. Chapter 6 discusses grouping

55

CHAPTER 5. RELATION RESTRICTIONS 56

of resources, and how they are used as subject of a permission.

:Project

Read Of Project :Credential

Project Owner :Credential

Has Read Access Restricted To

Is Owner
:User

Is Granted To

Is Granted To

Is Granted Credential

Is Granted Credential

Project Member :Role

Member Of

Figure 5.1: An example of access restriction relations. The project has two access
restriction relations, one restrics read access (Has Read Access Restricted To), and the
other one the ownership (Is Owner). See Figure 5.2 for the class definitions of the two
relations. See Chapter 8 for details about users and roles.

5.2 Access restriction relations

An access restriction relation is a constraint on the access to a resource. The amount
and form of restrainment is defined by the corresponding class description in an ontology.
For instance, the relations Has Read Access Restricted To and Is Owner of the previous
example (Figure 5.1) are defined in the Access Restriction Ontology. See Figure 5.2 for
their class definitions.

Has Access Restriction
Restricts Write Of

Is Owner

Has Relation Access Restricted To

Relation
Restricts Read Of

Has Read Access Restricted To

Figure 5.2: The definitions of Is Owner and Has Read Access Restricted relations. Is
Owner relation restricts writes (link and unlink) of Has Access Restriction relation, the
super class of all access relations, and as an effect it restricts all access modifications.
Has Read Access Restricted To restricts reading of Relation, the super class of all
relations, and thus restricts the visibility of everything.

There are two types of access restriction relations: relation access restrictions and literal

CHAPTER 5. RELATION RESTRICTIONS 57

access restrictions.

A relation access restriction is a relation that limits the accessibility by relation class(es).
This sets the granularity of the whole model to relation class; individual statements can
not be distinguished. A relation restriction class is inherited from the superclass Has

Relation Access Restricted To.

The class is annotated with Restricts Relation relations (See Figure 5.3 for the class hi-
erarchy). They define the form (read, link and unlink) and the relation (relation class)
of the restriction. There are four different annotations: Restricts Read Of, Restricts Link

Of, Restricts Unlink Of, Restricts Write Of. Write is an auxiliary relation; a union of
link and unlink. Read restriction also restrics write access1, therefore Restricts Read Of
is a subclass of Restricts Write Of. Figure 5.2 has an example of two relation restriction
definitions. See Section 9.3 for an example case where restriction relations are applied.

Restricts Read Of

Restricts Link OfRestricts Unlink Of

Restricts Write Of

Restricts Relation

Figure 5.3: The class hierarchy of Restricts Relation, the annotation relation of
restriction relations.

Literal access restrictions constrain operations on literal values (See Subsection 3.2.3).
There are two type of literal access restrictions: read (Has Literal Read Access Restricted

To), and write (Has Literal Write Access Restricted To). See Figure 5.4 for the class
hierarchy.

Access restriction relations of different types (eg. literal or relations, read or write) can be
combined with multi-inheritance. For instance, Has Read Access Restricted To restricts
the reading of both literals and relations because it inherits Has Literal Read Access
Restricted and Has All Relation Read Access Restricted To. See Appendix B for the class
hierarchy and the definition.

1Resource that cannot be seen cannot be written to.

CHAPTER 5. RELATION RESTRICTIONS 58

Has Literal Read Access Restricted To

Has Relation Access Restricted ToHas Literal Access Restricted To

Has Literal Write Access Restricted To

Has Access Restriction

Figure 5.4: The class hierarchy of the primitive access restriction relations.

5.3 Credentials

A credential is an object that mediates the authority of permissions (an access relation).
They are granted to principals. See Figure 5.1 for an example. Access restrictions refer
to either a credential or a credential expression, which both define the requirement for an
access.

5.3.1 Credential Expression

A credential expression is a boolean expression that defines the set required for an access.
Credential Operands build up a tree that form the expression (See Figure 5.5 for an
example). There are three operand classes: Intersection, Union and Complement.

:Intersection
Op

Has Credential Op

:Union Op

:Complement
Op

CredA:Credential

CredB:Credential

CredC:Credential

Has Credential Op

Has Credential Op

Has Credential Op

Has Credential Op

Figure 5.5: Graph representation of an example credential expression
(CredA|CredB)&!CredC).

CHAPTER 5. RELATION RESTRICTIONS 59

Implementation Note: Due to the open access control policy, a credential op, like any
other resource, can be modified by any user. As they are used for access configurations
they should be protected from tampering. In the implementation credential ops are set
immutable (See Section 5.5). As immutable they can be read but not modified.

5.3.2 Credential Delegation

For credential delegation a simple model was developed. There is a Delegated By relation
that controls the right to delegate a credential. It is defined as a relation restriction that
restricts delegation (write of Is Granted To relation) and the delegation right (write of
Delegated By relation) (See Figure 5.6).

The model has permanent, monotonic, total, multi-step, unilateral, non-cascading revo-
cation, and grant-independent characteristics of delegation (See Subsection 2.4.4 for the
delegation characteristics).

Restricts Write Of

Delegated By

Has Relation Access Restricted To

Is Granted To

Delegates Credential

Restricts Write Of

Inverse Of

Is Granted Credential
Inverse Of

Credential

Has Range

Has Domain

Has Domain

Has Range

Has Range

Has Domain

Figure 5.6: The definiton of Delegated By relation.

Delegates CredentialAdministrator :Role :Credential Member :Role

Delegated By

Is Granted To

Is Granted Credential

Figure 5.7: An example of Delegated By relation. The administrator role has the del-
egation right of the credential, which is delegated to the user role. Chapter 8 discusses
how the credential model is bound with RBAC.

CHAPTER 5. RELATION RESTRICTIONS 60

5.4 Ownership

In RRBAC, ownership is defined as an authority to change access rights. Is Owner relation
restricts the right to modify access restrictions. See Figure 5.2 for its definition and
Figure 5.1 for an example. The relation restricts the writing of Has Access Restriction,
which is the superclass of all access restriction relations (See Figure 5.3, or Appendix B
for the class hierarchy), and because of the inheritance, it applies to all access restrictions.

5.5 Immutability

An immutable object is read-only2. A benefit of an immutable object is that it can be
copied by making a copy of its reference instead of copying the whole object. The user is
always asserted that the contents of the object do not change.

Immutable property has also use in semantic graph model. For example, in the access
control model, the resources that are used in the access definitions should be protected
(See Subsection 5.3.2). Immutability is a solution to the problem. Once a transaction,
that sets a resource immutable, is commited the resource will be set in permanent read-
only state. The only change there can be, happens when the resource is released by the
garbage collector after it is no longer referenced.

In the Access Restriction Ontology, there is an Is Immutable relation, which denies all
write operations. It is a write restriction of all relation classes (Relation) and a reference
to a static immutable credential Nobody. See Figure 5.8 for the definition and an example.

5.6 Access Restriction Example

In this example we define access restrictions to an object. There are three credentials of
different levels. CredC is the highest credential. It allows any changes to the object, and is
held by the owner. CredB is a credential that gives the access to modify the object, but not
the right to modify its access rights. It is granted to everyone who works with the object.
CredA is a credential that is required for reading the object. If the user possesses none of
the credentials the visibility is completely hidden. The access power of the credentials is
illustrated in Figure 5.10.

There are three access restriction relations (See Figure 5.9): Is Owner to CredC to deter-
mine ownership, Has Write Access Restricted To to CredB|CredC to set credential for

2at least externally; they seem read-only to the user of the object.

CHAPTER 5. RELATION RESTRICTIONS 61

Is Immutable relation always refers to a
static credential Nobody . It is not owned by
or delegated to anyone .

Restricts Write Of

Defined in ontology

Defined at instance level

:Object Nobody :Credential
Is Immutable

Is Immutable restricts write of all relations
(the supertype , Relation), therefore it
restricts all write operations of all relations ,
and thus is immutable .

Delegated By

Has Relation Write Access Restricted To

Is Immutable Relation

Figure 5.8: The upper part of the image illustrates the definition of Is Immutable
relation. The lower part has an example of its usage.

write access, and Has Read Access Restricted To CredA|CredB|CredC for read access.
See Appendix B for the definitions of Has Read/Write Access Restricted To relations .

:Object

:Union Op

:Union Op
Cred C :Credential

Cred B :Credential

Cred A:Credential

Has Credential Op

Has Credential Op

Has Credential Op

Has Credential Op

Has Credential Op

Has Read Acccess Restricted To

Has Write Access Restricted To

Is Owner

Figure 5.9: An example of three access restriction configurations to an object. CredC
implicates ownership, CredB|CredC write, and CredA|CredB|CredC read access.

5.7 Implementation

Filter and validator services in ProCore and ProConf (See Section 3.4) are used in the
implementation of the access control mechanism. The part of the access control that
protects resources from modifications is implemented as a validator. In contrast to the

CHAPTER 5. RELATION RESTRICTIONS 62

Write Access
(CredB)

Read Access
(CredA)

Owner
(CredC)

Figure 5.10: A venn diagram that describes the access power of the credentials over
the object in the example of Figure 5.9.

case desribed in Subsection 2.10.2, we decided that if the user does not possess sufficient
credentials for write action (link/unlink), the modifications should not be ignored, instead
the whole transaction is forced to cancel. This gives the commiter immediate feedback
and the responsibility to react appropriately.

The part of the access control that enforces the confidentiality of resources (read) is im-
plemented as a triple filter. If the user does not have sufficient credentials, confidential
triples are filtered out from the result of the query.

The implementation of the validator and the filter uses an additional graph model that has
unrestrained access to the graph3. It is used for three purposes: analyzing the meanings
of restriction relations, reading the credentials the user session has, and evaluating the
permissions set on resources. The idea is the same as the idea of Maintenance Model
described in Subsection 2.10.2.

Since filter and validator mechanisms are available in the server and in the client, the same
implementations can be used in communication between ProCore servers, in communica-
tion between server and the client, and inside the client. Access control inside the client
is used to give immediate feedback to the user interface. Because the platform is under
development, the access control has not been installed in server-to-server communication.

The implementation that analyses the restraining power of restriction relations is rather
simple. Literal operations are restricted if the relation is inherited from Has Literal
Read/Write Access Restricted To. For relation restrictions, it takes into account only
the three annotation relations Restricts Link Of, Restricts Unlink Of, and Restricts Read
Of. Restricts Write Of is a union of link and unlink, and is handled with their respective

3Unrestricted in its execution context. Only the root server has fully unrestrcted access.

CHAPTER 5. RELATION RESTRICTIONS 63

mechanisms. The implementation makes also an analysis of the inheritance, as the relation
restrictions are acquired from superclasses to subclasses.

The idea in RRBAC is that resources can always be referenced to4 even without write
privilege. Although, this applies only to one-way relations (relations without inverse),
because the system automatically generates the corresponding inverse relation. The gen-
eration is handled by a rule (See Section 3.4 for description of rules) that is executed in
the same transaction and with the same access privileges as the transaction that adds the
original relation. Therefore, adding/removing two-way relations require link/unlink right
on both the subject and the object. There are no restrictions for incoming relations, but
because of the rule, incoming relations are restricted by restricting their inverse class.

4used as the object of a statement

Chapter 6

Propagation and Context Design

For the problem of describing contexts in the graph, and the automatic propagation of
their contents, we have devised an ontology called Domain Ontology. In this chapter,
we discuss its design (Section 6.1), and implementation (Section 6.3), and also how it is
bound with the permission model (Section 6.2). Finally, in the end of this chapter there
is a brief discussion (Section 6.4).

6.1 Domain Ontology

Domain Ontology has been designed to meet the requirements for graph based contexts
(grouping of resources) with posterior propagations. Graph based context means that the
context (sub-graph) is described with the same primitives that build-up the graph (edges
and nodes). Posterior propagation means propagation that is automatic and responds to
structural changes also after initial setup.

6.1.1 Requirements and Design Criteria

There are two major design goals: grouping of resources, and automatic propagations. For
the RRBAC model the sufficient level of granularity is a resource. Support for statement-
level contexts poses extra memory and performance overhead.

Automatic propagations require propagation rules. The query mechanism of viewpoint
(See Section 3.6) seems promising as it is agile and extendable, and is already in place
in Simantics. It supports both ontology level and programmable configurations. On the
other hand, its discontinuity property poses additional challenges to the design.

64

CHAPTER 6. PROPAGATION AND CONTEXT DESIGN 65

:Domain

Consist Of

Domain Consist Of

:Project :Diagram

Has DomainPart Of Domain

Has Propagation Source

:Viewpoint
Has Propagation

Rules

Domain Consist Of Part Of Domain

Figure 6.1: Example of domain instance that contains a project and a diagram. The
consist of in diagram induced propagation from project to diagram.

The operation that evaluates access rights occurs more frequently than the operation
that makes modifications to permissions. To evaluate access of a resource, access control
mechanism searches for all effective permissions. Permissions for groups are set on the
group object. In the design, the operations are given the following priorities, highest
priority to access evaluation (look-up), medium priority on structural changes, and lowest
priority on initial setup.

The query constraint (C3.6) poses also additional considerations. Because relations cannot
be traversed backwards or random accessed, inverse relations must be used.

6.1.2 Ontology

In the Domain Ontology there is an object called domain that represents the group of
resources. Appendix C contains the description of the ontology.

In the context of access control the requirement for quick evaluation dictates that there
must be direct references from the resources to all the contexts they are members of.
The domain has two different ways of referral: explicit and implicit. Explicitely referred
resources are part of the domain, they belong to the group. Implicitely added resources
are not part of the domain but are referred by it. Implicit resources are linked to the
domain to keep track of the propagation source. This is required due to discontinuity

property of viewpoints.

All resources that have been attached to the domain due to propagation have a propagation
source relation that keeps track of the propagation route. See Figure 6.1 for an example.
Propagation route serves as a rationale about propagation reasons. It is required to keep
propagation consistent during structural changes. To be able to distinguish intersecting

CHAPTER 6. PROPAGATION AND CONTEXT DESIGN 66

domains, the propagation source relation is a domain specific relation instance (See Sub-
section 3.2.2 for relation instance property). The instance has a reference to the domain,
it points to the context in which the propagation occured.

6.1.3 Formally

Let D denote the finite set of all Domains.
The previous definitions have been defined at subsection 3.6.1.

Definition. A domain (E, I, v) ∈ D is a triple, where E ⊆ E is a set of entities that are
contained in the domain explicitly, I ⊆ E is a set of entities that are in the domain im-
plicitely, v ∈ V is an optional field for viewpoint that determines the rules of propagation.

Propagation algorithm:

Propagation: E ← E ∪ { s | t = (s, p, o) ∈ S, s /∈ E, qv
a(t) }

Unpropagation: E ← E \ { s | t = (s, p, o) ∈ S, s ∈ E,¬qv
a(t) }

Propagation (for implicit): I ← I ∪ { s | t = (s, p, o) ∈ S, s /∈ I,¬qv
a(t), qv

t (t) }
Unpropagation (for implicit): I ← I \ { s | t = (s, p, o) ∈ S, s ∈ I,¬qv

a(t),¬qv
t (t) }

6.2 Binding with RRBAC

In RRBAC, access permissions must be set on every resource separately, which would cause
immensive amount of administrative task. Propagation and grouping of the resources
reduces task. For instance, an access restriction that is set on a group resource is applied
to all the contents of the group. Restrictions to a whole group of resources are controlled
at one point.

The acquire mechanism (described in Section 3.5) is utilized to bind RRBAC with Do-
mains. Part of Domain relation is annotated to acquire Has Access Restriction relation
and its subclasses. Thereby access restrictions set on the domain apply to all the resources
of the domain.

This solution is completely based on the relation definitions in Domain Ontology. It does
not require any changes to the implementation of the access control mechanism.

Domain ontology describes grouping of resources and viewpoint based propagation. A
domain represents a group of resources. It is used as an access restriction entry point
for the whole domain. The contents of domains are linked with Part Of Domain relation
to the domain. The relation is modified to acquire access restriction relations from the

CHAPTER 6. PROPAGATION AND CONTEXT DESIGN 67

domain to its contents.

6.3 Implementation

During propagations, domains change size and form as the contained resources are altered.
Propagations are handled by a domain propagation rule (Section 3.4 describes rules).

There are four cases where propagation is activated:

� A resource is added to a domain.

� A resource is removed from a domain.

� A resource is linked to another resource that is a part of a domain, and the relation
is acceptable/traversable by the propagation rules (viewpoint).

� A relation between two resources, that are both part of the same domain, is unlinked,
and the relation was acceptable/traversable by the propagation rules (viewpoint).

The propagation process is conducted in the same transaction and with the same privileges
as the modification that started it. In case propagation reaches a resource to which access
privileges are not sufficient, the whole transaction is forced to cancel, including the original
modification. This mechanism prevents conflicts with the domain. For instance:

� The user cannot add to the domain a resource to which she has no write privileges.

� The user cannot make modifications to a resource that would cause propagation to
add a resource to which she has no write privileges.

As the propagation is based on viewpoints, it utilizes viewpoint queries is acceptable and
is traversable to find out if a resource should be part of the domain. Queries are made
to all the relations of the resource. If any of the queries is TRUE the resource will be
linked to the domain. If the resource is traversable but not acceptable it will be linked as
implicit with Domain References relation, and if it is acceptable then it will be linked as
explicit with Domain Consist Of relation. The propagation will proceed further until all
resources belonging to the viewpoint are added to the domain.

6.4 Discussion

Because of the filter mechanism, there might be reduced visibility of statements in the
client where domain propagation rule is ran. This might cause the propagation to be

CHAPTER 6. PROPAGATION AND CONTEXT DESIGN 68

incomplete or unauthorized. Although not currently implemented, the plan is to re-run
the rule on the server side when transaction is processed. This would ensure the domain
remains solid in regard to its propagation rules. Also because the rule is followed by access
validation, the authorization of the propagation is verified. The process is again re-re-run
when the server commits the changeset to its master server (See Section 3.3 for server
architecture).

Chapter 7

Concept Ontology

The problem of what consist an object in graph was introduced in the problem statement
(Section 1.3). To that problem and to the issue of describing structures between objects,
we have designed a solution that is discussed in this chapter. We give an introduction in
Section 7.1, present our solution in Section 7.2, and in conclusion have a brief discussion
in Section 7.3.

7.1 Introduction

For regular users, it is complicated to choose nodes and edges for the object of an access
permission without prior knowledge of ontologies. Even with keen knowledge, the work is
tedious. When the ontologies are annotated with domain specific viewpoints and concept
descriptions, the user interface is able to interpret the graph model with high-level objects
that are familiar to a regular user. See Figure 9.4 for an example. Without domain specific
support, only an experienced user is able to make access control configurations by choosing
or creating appropriate domains and viewpoints. The purpose of the concept ontology is
to model the structures of objects in graph data.

In this chapter the term concept stands for an idea that is comprehendable to users, the
term object means manifestation of a concept in a graph data structure, and the term
resource denotes a node in a graph.

In the graph model, an object can consist of multiple resources. It is often a composition of
properties, relations and sub-objects. For instance, a project object can be seen as a union
of the project resource and all its sub-objects, libraries, diagrams, simulation flowsheets,
etc. The sub-objects further consist of sub-components, symbols, connections, etc.

69

CHAPTER 7. CONCEPT ONTOLOGY 70

Named Class

1 *

Has Concept Description Concept Description Viewpoint

1 1

Has Concept Viewpoint

Figure 7.1: UML class diagram of the main objects in concept ontology.

7.2 Concept Ontology

Concept ontology is intended for annotating other ontologies in order to describe objects,
structures of objects and relationships between objects. Named Classes are tagged with
one or multiple concept descriptions. Each one has a name and a viewpoint (See Section 3.6
for definition of viewpoint). The viewpoint determines how an instance of the class is
viewed as an object. Figure 7.1 contains the class diagram of Concept Description object.
There are more detailed specifications about the classes in Appendix D.

Concept Descriptions bind with domains with the use of viewpoints, because they are both
based on them. A view of an object is generated by creating a domain with propagation
rules acquired from a concept description of a class.

Definition.

Let C denote the set of all concepts.
Let N denote the set of all named classes.
A concept (n, v) ∈ C is a pair, where n ∈ N is the named class that is tagged with the
concept, and v ∈ V is the viewpoint that determines the perspective for an instance of the
class.

7.2.1 Concept Consist Viewpoint

It is laborious to create a customized viewpoint for every object, and keep them updated,
when they are used or extended in other ontologies. We have devised a viewpoint and a
relation class as an instrument to the problem. The viewpoint, Concept Consist Viewpoint,
inspects the structure of objects, both internal and external. More precisely, the viewpoint
accepts and traverses the relation, Concept Consist Of, and naturally all its subclasses.
The viewpoint is used as a viewpoint definition of Concept Descriptions.

In order for the viewpoint to work, ontologies must be modified so that they use the re-
lation. Relations that describe internal structures of objects are “annotated” by (multi-)-
inheriting Concept Consist Of relation. For example, the superclass of all property rela-
tions, Has Property in Layer0, is annotated. Because Has Property is now also Concept
Consist Of, all properties belong to the structure of objects in the perspective of the view-

CHAPTER 7. CONCEPT ONTOLOGY 71

point. Inter-object relations that describe composition of objects are annotated as well.
For example, the composition relation of Libraries, Library Consist Of, is annotated. See
Section 9.2 for an example use of Concept Consist Of in a domain specific ontology.

It should be noted that there should be separate relations for aggregation and composition.
Aggregative relations should not be annotated with Concept Consist Of.

The idea of annotating relations for propagation rules is similiar to the idea of classify-
ing relations in the concept-level access control by Qin and Atluri[QA03] (See Subsec-
tion 2.8.1).

7.2.2 Concepts across ontology mappings

In case of objects with mappings across ontologies, the user must be able to choose whether
to use the object with or without mappings. Concept Consist Viewpoint is not sufficient
for this requirement (REQ5.3).

We have created another viewpoint to solve the problem. The viewpoint, Concept Consist

Viewpoint (With Mappings), extends the original viewpoint, Concept Consist Viewpoint,
by adding the superclass of all mapping relations, Mapping Relation, to the list acceptable
and traversable relations. The new viewpoint “follows” the structures of objects and
mappings of objects. See Figure 9.3 for the definiton.

For the choice of the two possible objects, the class is annotated with two Concept De-
scriptions. One has Concept Consist Viewpoint as a viewpoint, and the other one Concept
Consist Viewpoint (With Mappings). The user interface makes a query which object to
use (See Figure 9.4).

7.3 Discussion

One of the benefits of Concept Consist Viewpoint is that it does not impose dependencies
between ontologies. Another is an easy extendability to future and unknown ontologies.
It is easy to create structural composition relations between objects without modifications
to viewpoints, which might reside in other ontologies.

The problem with it, is its simplicity; it may be too simple. There might be cases when
the use of the relation is controversial. For instance, a relation that is composition for
one object but not for another. It cannot be annotated with Concept Consist Of. Such
problems could probably be circumvented by cloning the viewpoint and the subclassing
the Concept Consist Of relation, similiar to the solution in Subsection 7.2.2.

CHAPTER 7. CONCEPT ONTOLOGY 72

Layer0 classes Project, Model, Model Library, Ontology, Viewpoint, and Viewpoint Li-
brary are annotated with concept descriptions. Layer0 relations Ontology Consist Of,
Property Of, and Library Consist Of are annotated with Concept Consist Of.

Chapter 8

Authorization Design

In this chapter, we discuss the use of an Role-Based Access Control model. At first, we
present an ontology for a basic RBAC model in Section 8.1. In Section 8.2 we present how
the ontology integrated is to RRBAC, and how it replaces the use of credentials. Finally,
in Section 8.3 we discuss issues related to the implementation.

8.1 Basic RBAC Ontology

We have set up a basic ontology for Role-Based Access Control (See Section 2.2.3). The
purpose of the RBAC is to simplify administrative task of the permission management.
RBAC is used for user and group management (See Section 2.2.3). The model has user
and role features from RBAC0 and role inheritance from RBAC1.

The ontology has four basic concepts. A Group is a container of Users. A Role Group

is container of Roles. Role inheritance is represented with Has Senior Role and Has
Junior Role relations, which are mutually inversive. A role is a container of users. User
membership in a role is defined with Member Of relation. See Figure 8.1 for the class
diagram.

8.2 Binding with RRBAC

The credential management in RRBAC model requires extra management effort because
of the lack of user groups. To transfer the credential management into role manament we
have extended the RBAC ontology and integrated it with the RRBAC model.

In the combined model, user and role instances function as containers for credentials which

73

CHAPTER 8. AUTHORIZATION DESIGN 74

User

Group Role Group

Role

Group Consist Of Role Group Consist Of

Assigned To

Has Senior RoleHas Junior Role

Member Of

Figure 8.1: UML Class Diagram of the classes in RBAC Ontology.

:User :Role
Is Member Of

CredA:Credential

Is Granted Credential

CredB :Credential
Is Granted Credential

A:Role

Is Member Of

B:Role
Has Junior Role

CredC :Credential
Is Granted Credential

Figure 8.2: An example of credential assignment. CredA is granted directly to the
user. CredB is acquired to the user with Is Member Of relation. CredC is acquired to
the Role A with Has Junior Role relation, and finally to the user with Is Member Of
relation.

they are granted. Granted credentials are linked with Is Granted Credential relations (See
Figures 5.7 and 8.2 for an example).

Users inherit all credentials of all roles they are members of. Roles inherit credentials
of all their junior roles in the role hierarchy. The acquisition of the credentials is based
on the acquires mechanism (See Section 3.5). Member Of and Has Junior Role relations
are extended to acquire credentials from the object. This is archieved with inheritance of
Acquires Credentials. See Figure 3.6 for the definiton of Acquires Credentials and Member
Of relations.

CHAPTER 8. AUTHORIZATION DESIGN 75

8.2.1 Intrinsic Credential

Each user and role instance is annotated with a single static credential. The credential
represents its corresponding owner. The ownership of the credential is forced. It is defined
immutable and it cannot be removed. It is distinguished from the granted credentials with
a Has Intrinsic Credential relation. The intrinsic credential is used when a permission is
applied to a user or a role directly. For example, if ownership of an object is granted
directly to a user, the object is linked with relation Has Owner to the user’s intrinsic
credential. See Figure 9.6 for an example use of intrinsic credential.

With the use of intrinsic credentials, the user interface disguises the credentials into users
and roles. See Figure 9.7 for the user interface of permission editor, where two intrinsic
credentials (Project Manager and Project Member) are shown as the roles they represent.

8.2.2 Role Administrator

Roles must be administrated. In addition to intrinsic credentials, the roles have a role

administration credential, which delivers the privilege to manage the role. Role adminis-
trator modifies member assignment, role inheritance, and properties (named, description)
of the role.

The Role Administrator is set with Has Role Administrator relation, which is defined
as an access restriction that restricts the writing of Has Senior Role, Assigned To, Has
Name, Has Description and Has Role Administration relations. See Figure 8.3 for the user
interface of the role editor.

Role can be administrated by any member, if the administration credential is granted to
the role itself.

8.3 Implementation

When a user logs into the system, the access control implementation makes an analysis of
the credentials she is granted. The identity of the user is represented by a resource in the
graph, an instance of the User class. The credential analysis is a simple procedure; the
mechanism makes a query for all Is Granted Credential relations of the instance. Because
of the acquire mechanism, the result subsumes credentials granted to the roles the user is
member of, including credentials from role inheritance (See Figure 8.2).

Due to this implementation decision, the user can be granted credentials directly, which

CHAPTER 8. AUTHORIZATION DESIGN 76

Figure 8.3: The user interface of the role editor.

is different from the standard RBAC model where only roles are assigned permissions.
Also, in some RBAC models, users have to activate and deactivate individual roles they
are using at particular time. Constrictions may prohibit simultaneously activation of a
set of roles. In our system, all roles are active always and simultaneously.

Even though the inverses of two-way relations are generated automatically (See Sec-
tion 5.7), for safety redundancy reasons, the implementation verifies that the inverses
of the following acquiring relations exist: Has Junior Role ↔ Has Senior Role, Is Granted
Credential ↔ Is Granted To, Member Of ↔ Is Assigned To. For instance, Member Of
relation, which acquires credentials from roles, is accepted by the implementation only if
the corresponding inverse Assigned To exists.

Chapter 9

Case Process Modelling of a

Bleaching Line

In this chapter, we present the access control model used in an example application case.
The application is introduced in Section 9.1. We give a description of how the domain
ontologies are modified to accomodate access control in Section 9.2. In Section 9.3, we
build up an example case and add access permissions. Finally, In Section 9.4 we discuss
the use of the access control in the case.

9.1 Introduction

In Vista project [BLH+07], there has been developed a multi-phase chemical process simu-
lator specialized in simulation of bleaching line (See Figure 9.2 for an example). Bleaching
line is the component of a pulp mill that removes residue lignin from pulp in order to make
it brighter and cleaner.

Simantics has a generic ontology based 2D Diagramming Editor User Interface [Leh07].
For process simulation flowsheets, a customized version of the editor (See Figure 9.1) was
created in the Vista project. The editor is based on a set of diagramming ontologies (Flow-
sheet Diagramming, etc), the simulator is based on a set of Vista ontologies (Flowsheet
Ontology, Multiphase Chemistry Ontology, etc), and the two domains are bound together
with ontology mapping. There are one way mappings from diagramming concepts (Dia-
gram, Connection, Symbol) to flowsheet concepts (Flowsheet, Stream, Unit). In practice,
as the diagram modeller creates diagrams with the editor, ontology mapping mechanism
automatically generates respective flowsheet models.

77

CHAPTER 9. CASE PROCESS MODELLING OF A BLEACHING LINE 78

Figure 9.1: The diagramming editor in the Vista case. The diagram in the editor is
Washer internals.

Figure 9.2: Flowsheet diagram of a bleaching line process.

9.2 Binding the Access Control to domain ontologies

For the access control system to provide the users high-level objects such as flowsheet
and diagram, and to (optionally) propagate access rights from diagrams to flowsheets,
there must be support in the domain ontologies. In Chapter 7, Concept Descriptions are
discussed and stated as structural descriptions of the objects.

The diagramming ontologies have a class Diagram, that is a description of 2D-diagrams
consisting of symbols and connections. In the simulation ontologies, there is the Flowsheet

class, which is a description that consist of simulation units and streams used in the sim-
ulator. The classes Diagram and Flowsheet were annotated with a Concept Description,

CHAPTER 9. CASE PROCESS MODELLING OF A BLEACHING LINE 79

Concept Consist Viewpoint : ViewpointConcept Consist Of : Named Class Concept Consist Viewpoint (With Mappings) : Viewpoint Mapping Relation : Named Class

Diagram : Concept Description Diagram (With Flowsheet Mappings) : Concept Description

Flowsheet : Named Class Diagram : Named Class

Diagram To Flowsheet Mapping : Named Class

Flowsheet : Concept Description

Has DomainHas Range

Has Concept Description
Has Concept DescriptionHas Concept Description

Has Concept Viewpoint Has Concept Viewpoint Has Concept Viewpoint

Accept Relation

Traverse RelationAccept Relation

Traverse Relation
Clone Of

Figure 9.3: The diagram illustrates the Concept Description annotations for Flow-
sheet and Diagram classes. Diagram is annotated with two Concept Descriptions; one
with mappings and one without.

both with Concept Content Viewpoint as the propagation rules.

Because the Concept Content Viewpoint only accepts and traverses Concept Consist Of

relation, the relations in the domain ontologies are not visible to the viewpoint as they
are, and therefore they must be modified. Diagram Consist Of and Flowsheet Consist

Of Unit are the super class in two domains that all the other structural relation types
inherit. They were adjusted to multi-inherit Concept Consist Of relation, and thereby the
viewpoint now propagates the whole structure of flowsheets and diagrams.

The user must have an option to choose whether the access control applies to mapped
objects too (REQ5.3). Therefore the Diagram class was also annotated with another
concept description, Diagram (With Flowsheet Mappings), which has Concept Consist

Viewpoint (With Mappings) as a propagation rule (viewpoint). It subsumes the Diagram
and its mapped Flowsheet counterpart, because it traverses with Mapping Relation, which
is super type of our domain specific mapping relation, Diagram to Flowsheet Mapping.
See Figure 9.3 for the diagram of the concept descriptions.

Concept descriptions for Libraries (user, role, diagram, ect) and Project have already been
annotated to concepts in Layer0.

Now, when the user edits the access rights of a diagram, the user interface (UI) makes
two concept suggestions how to inspect the object. One proposal has the diagram includ-
ing all its structure, and the other one has the diagram including its mapped flowsheet
counterpart. See Figure 9.4 for a screenshot of the UI. Once the user makes her choice, a
domain is created with the propagation rules that are acquired from the selected concept.
Access right restrictions are attached to the domain.

CHAPTER 9. CASE PROCESS MODELLING OF A BLEACHING LINE 80

Figure 9.4: The user has selected a diagram to edit the access rights. The UI
first queries the viewpoint for rights editing, and based on concept descriptions of the
diagram class, it makes suggestions: with or without mappings (to Vista flowsheet). On
the right side of both images there are previews of domains according to the viewpoint
selection in the left. The upper image shows a preview without mappings, and the
lower with mappings. Access right editor follows the viewpoint dialog (Figure 9.7).

9.3 Setting up an example case

Carol, the project manager, sets up our example project. She creates four libraries: User
Library, Role Library, Diagram Library and Flowsheet Library. Diagram Library is a con-

CHAPTER 9. CASE PROCESS MODELLING OF A BLEACHING LINE 81

Figure 9.5: The setup of the project in the example case. There are libraries for
diagrams, flowsheets, roles and users.

tainer for all diagrams, and respectively Flowsheet library for all flowsheets. See Figure 9.5
for tree view of the setup. She gives ownership of the whole project domain to project
manager role (See Figure 9.7).

Appropriate domains are suggested and created automatically by the access control sys-
tem. Their contents are propagated according to the viewpoints which are acquired from
the Concept Description annotations of the classes. The domain of the project consist
of the objects linked to the project. For instance, the domain of the Diagram Library is
sub-domain of the project domain. It consist of the library itself and all of its diagrams,
including their internal structures. See Figure 9.8 for illustration.

User Library is populated with three users: Alice, Bob and Carol. Four roles are added
to the role library: Project Member, Project Manager, Simulation User and Diagram
Designer. See Figure 9.6 for a diagram of assignment of the users to the roles, the role
hierarchy, and the applied access restrictions.

The role inheritance is the following: Project Manager−B Diagram Designer−B Simulation
User−B Project Member. Project Member is given read right to the project domain. Since
all the other roles are senior to the Project Member role, they acquire the same access
right. Modification of flowsheets (Simulation Library and its contents) is restricted to
Simulation Users. Changes to diagrams (Diagram Library) are set to require membership
of Diagram Designer role. The Simulation User role must be junior to The Diagram
Designer role because of the mappings; diagrammer must have write privileges to the
simulation models since the mapping mechanism reflects modifications to the flowsheets
as well.

CHAPTER 9. CASE PROCESS MODELLING OF A BLEACHING LINE 82

Consist Of

Users

Carol

Alice

Bob

Roles

Project Manager

Diagram Designer

Simulation User

Permissions /
Credentials Resources

(Domains)

A Project

Diagram Library

Flowsheet Library

Is member Of

Is member Of

Is member Of

Has Senior Role

Consist Of

Project Mgr . Cred .

Diagram Dsgr . Cred .

Simulation User Cred .

Has
Intrinsic

Cred .

Has
Intrinsic

Cred .

Has
Intrinsic

Cred . Has Owner

Has Senior Role

A Diagram

A Flowsheet

Mapping Relation

Consist Of

Consist Of

Project Member

Has Senior Role

Project Member Cred .

Has
Intrinsic

Cred .

Has Read Restricted To

Has Write Restricted To

Has Write Restricted To

Figure 9.6: The figure illustrates the relations between users, roles, permissions, and
resources of the example case.

Figure 9.7: The user interface of the access right editor. In the image, the se-
lected target of the dialog is the project domain. There are two restrictions attached;
restriction for ownership and restriction for reading.

9.4 Using the access control in the example case

Alice, the diagram designer, designs a flowsheet diagram of a bleching line process (See
Figure 9.2). Ontology mappings create a respective simulation model. Bob, as a member
of the Simulation User role, has write access to the simulation flowsheets. He runs simu-
lations with different boundary values, changing the volume and cleanliness of the input
pulp and water, and analyses the result values.

Later, due to changes in the NDA of the project, visibility to the simulation flowsheet

CHAPTER 9. CASE PROCESS MODELLING OF A BLEACHING LINE 83

Project

Diagram
Library

Flowsheet
Library

Diagram

Flow-
sheet

Role
Library

User
Library

Project
Manager

Diagram
mer

Simulati
on User

A domain with mappings
from Diagram to
Flowsheet

Alice Bob Carol

Flow-
sheet

Diagram

Project
Member

Figure 9.8: Illustration of all the (potential) domains in the case. Domains are the
contexts where access restrictions are linked to. The project domain consist of all the
libraries including all their contents. Each library domain consist of all their respective
objects. One of the diagram objects has mappings to a flowsheet, and for that there is
a domain that subsumes them both.

and its diagram must be changed so that membership of an additional role, Special Sim-
ulators, is required. Project managers have the ownership of the project, and thus Carol
is the only one who can make the necessary access right modifications. She adds a read
access restriction to the diagram and chooses Diagram (With Flowsheet Mappings) as a
viewpoint. A domain that includes both the diagram and the flowsheet is created (See
Figure 9.8). Now, only a member of Special Simulators and Simulation Users can see and
run the simulation.

Chapter 10

Analysis and Discussion

In this chapter, we present analysis and discussion of the overall access control model. In
Section 10.1, we compare our model to other access control models in the perspective of
usability. Security related issues are discussed in Section 10.2. The performance of the
model is discussed in Section 10.3. Analysis of scalability is presented in Section 10.4.
There is some additional discussion in Section 10.5. Future improvements to our model
and a new research topic that emerged during the work are discussed in Section 10.6.

10.1 Usability

How is the content of an object described?

In our model, there are conceptual descriptions of objects, and data structure descriptions
of objects. Concept descriptions are pre-defined rules based on class definitions about what
high-level objects look in the graph model. They are presented to the user for selection
how an object is traversed in the graph. According to a selection, the system traverses
the object and creates a data structure description (domain) of it.

Concept-Level Access Control is another model with propagation feature. Permissions
propagate between objects, but with the difference that it takes into account only concepts,
not instances. The user chooses a concept to which access permission is added.

In policy languages (KAoS, Rei, Ponder, Subsection 2.7.4), accesses are controlled by
constraining the use of actions. Objects are a constraints in the applicability of actions.
KAoS and Rei describe objects with OWL constructs. The user must have knowledge
of the domain ontologies. In Ponder, policy target objects are normally described with
domains of objects, which consist of individuals. Individuals must be categorized into

84

CHAPTER 10. ANALYSIS AND DISCUSSION 85

domains.

RDF Triple Store (Subsection 2.10.2) and RDF Gateway (Subsection 2.9.2) leave the
format of the object out of the scope. Typically it is described with explicit statement
level granularity. For instance, RDF Gateway uses contexts and quads with permissions.
Quad is an implementation of a statement that has a reference to a context which is the
object of an access permission. A difference to our model is that domains reside in the
same data structure with the content they describe.

How does the model influence how permissions are configured?

RDF Gateway has a database table for access permissions of a context. There are query
language commands for allowing and denying contexts from users and roles.

Policy languages describe authorizations of actions. Actions are used instead of access
rights. Positive and negative authorizations are supported. Existing policies can be over-
ridden with other policies. Meta-policies are used to describe precedence between policies.
Conflict resolutions are based on inference engines.

In our model, permissions are explicit relations. The expressional power of RRBAC is
rather limited as it does not support positive and negative authorization. The model is
simple and straightforward to use as long as the user does not want to make exceptions to
already existing permissions. Situtations where the user wants to raise the access rights
of an object whose access is already constrained are tricky. They can be solved by making
direct modifications to domains, using dual roles, or using separate permissions to each
individuals. Each solution is troublesome and would be avoidable if the access control
model were more flexible.

10.2 Security

Because the effect of access restrictions is defined in their relation classes, they must be
protected from tampering. Relations that affect propagation of domains should also be
protected. In fact, ontologies must not be modified after they are taken into use. The
task of write protecting ontologies is left for the system administrator.

The same problem situation applies to the viewpoints of concept descriptions and propaga-
tion rules of domains. On the other hand, it is solved with the same solution as viewpoints
are normally part of ontologies.

As already stated in Section 2.11, the use of open policy is inherently problematic, because
misconfigurations may be left unnoticed. This contributes to the overall vulnerability of

CHAPTER 10. ANALYSIS AND DISCUSSION 86

the system.

10.3 Performance

As with the RDF Triple Store Access Control (In Subsection 2.10.2) we have also had the
performance over expressional power as a design criteria. Access evaluation of a resource
is a rapid operation, as the amount of traversing is small. Similiar to ACL, permissions
are set explicitly to resources or to domains. In the case of domains, two relations are
traversed. If the object of an access restriction statement is a credential expression, the
whole expression is evaluated. In all, both operations of the access control mechanism,
filtering and validation, are linear in time.

On the other hand, the implementation of the overall model is performance-impaired. This
is due to the implementation specifics of the domain propagation rule; it is based on recur-
sion. Every time a single resource is added to a domain it invokes other rules, including
ontology mappings, access control validator, and finally itself. A better implementation
would invoke the other rules only once.

10.4 Scalability

The domain model scales moderately to large data structures, and poorly when access
permissions are attached to objects that consist of each other. In a domain, there are
two statements for each reference to a resource: Domain Consist Of/Domain References,
and Part Of Domain/Referenced By Domain. There is also propagation path from each
resource to the root resource expressed with Propagation Source relations. The path is
not a tree, since propagation to a resource can originate from multiple (re-)sources.

Each domain is described with a separate set of statements. For instance, take the example
in Chapter 9, if the diagram, the diagram library, and the project objects all have access
permissions, three domains are created. The diagram object is a part of all the three
domains. Take Washer Internals as an example diagram (See Figure 9.1). It is described
with 881 resources and 3309 statements (See Table 10.1). A single domain that contains
the diagram requires 2684 statements for the description. Now, because there are three
domains, the total amount of statements is : 3309+2684∗3 = 11361, which is 243% increase
(See Table 10.2) to the total amount of statements forced by the domain mechanism.

CHAPTER 10. ANALYSIS AND DISCUSSION 87

Object Resources Statements Stms/domain

Washer internals Diagram 881 3309 2684

Washer internals Flowsheet 106 422 323

Diagram + Flowsheet +
Mapping Relations

946 3592 2938

Table 10.1: The number of resources and statements in the object, and the number
of statements in a corresponding domain. The reason why the numbers in the diagram
and in the flowsheet do not add up to numbers in the combined domain, is because
some properties, for instance names, are shared, and thus counted only once.

n = The number of domains

Object 0 1 2 3

Washer internals Diagram 0% +81% +162% +243%

Washer internals Flowsheet 0% +77% +153% +221%

Diagram + Flowsheet +
Mapping Relations

0% +82% +163% +245%

Table 10.2: The increase of statements when an object is part of n domain(s).

10.5 Discussion

Since the platform is under development, it has not been possible to actually test it with
multiple simultaneous users, although any expected problems should be inhere to the
multi-user environment, not to the access control. The server handles incoming commits
one at a time, and for the access control mechanism the source of commit is irrelevant1.

10.6 Future Work

This section discusses the future work. It is divided into three subsections according to
sub-domains.

1Naturally, the user identity is taken into account in the validation.

CHAPTER 10. ANALYSIS AND DISCUSSION 88

10.6.1 Domains

Clearly, there is room for improvement with the scalability of the domains. The three
domains in the example of Section 10.4 have partially the same structure but do not any
share statements. The model could be developed further to share the structure of the
overlapping parts of domains. Although, it seems that the sharing is reasonable only if
the domains share the same or a compatible propagation rules.

Relation instances (Subsection 3.2.2) will be removed in the next iteration of Simantics.
Currently, they are used with the Propagation Source relation of Domain Ontology to
annotate the context (domain) in which the propagation occured. In the future, the same
information is expressed with a slightly modified model. As a predicate of a statement,
there will be an anonymous relation that inherits of the actual relation.

Because the description of contexts is an independent problem, the domain solution could
be replaced with other solutions, for example, with quads. However, this would require
fundamental restructuring of the architecture.

10.6.2 Concept Description

Even though the concept ontology was sufficient for describing the objects in the exam-
ple case of Chapter 9.3, it will be tested in more use cases and developed further when
necessary. Currently, a flaw with the concept ontology is that it requires modifications in
ontologies, because the inheritance of the relations must be changed. The use of inheri-
tance relation will be changed to use a “regular” annotation relation.

The ProCore server merges incoming changesets into the database as they are commited.
Like Concurrent Versioning System (CVS), it must detect possible conflicts to prevent
corruption of data. For instance, if two clients starting with same the revision of the graph
make modifications to an object, and commit them, the object may become corrupted due
to concurrent modifications. In order to prevent corruption, the server accepts the first
commit, and announces conflict to the second one. If the two clients make commit with
modifications to different unrelated objects, the server accepts both commits without
conflict. Unfortunately, there is not currently any working conflict detection mechanism
in ProCore. Detecting conflicts inside one united data structure is a far more complicated
problem than detecting conflicts in a system composed of distinguishable files. If and how
Concept Descriptions can be used for detecting conflicts is a topic that deserves more
study.

CHAPTER 10. ANALYSIS AND DISCUSSION 89

10.6.3 RRBAC

The RRBAC can be developed further in some aspects. The current relation model takes
into account only the predicate of a statement. It could be extended to use the object field
as well, for example, a restriction on Consist Of relations to Model Libraries. Perhaps, if
the idea is taken even further, instead of using relation and object specific restrictions, a
more expressional sub-graph pattern based matching could be used. Such pattern would
express the case when the restriction is applicable. Triple patterns are already used RDF
Triple store query languages (See Subsection 2.6.4).

The lack of positive and negative authority (See Section 2.3) in RRBAC is a pitfall.
In the future, we will study possibilities for exceptions in restrictions. Perhaps how to
replace RRBAC with expressional policy language while maintaining domain and concept
mechanisms.

Chapter 11

Conclusions

In this thesis, we have developed an access control model to a semantic graph data struc-
ture. There was separation of problem domains from which it followed the design of our
model. Each domain is independent from others and replaceable with other solutions.

As permission model, we studied the use of relations that restrain the access of resources.
It follows open policy; access is allowed unless there is a restriction. A permission is a
statement whose predicate is a restriction relation. The restricting effect of the relation is
defined in an ontology, which allowes the model to be extended in domain ontologies.

A major problem has been the progation of permissions. In file systems, permissions can
optionally apply in folder tree structures recursively. The feature is desirable in the graph
model as well. We have studied the use of viewpoints as rules for inter-object permission
propagations. A viewpoint is a set of rules that answer whether a statement is a part
of a view. In our example application case, the user was given to an option whether the
permission propagates to mapped objects as well.

The permission model does not take stand on what is the object of a permission. Group-
ing of resources, domains, were developed to be used with the permissions. Domains are
annotated with viewpoints. The contents of domains are automatically completed accord-
ing to the viewpoints. A viewpoint is a user’s choice on what is the object of an access
permission. As there are structural modifications in the graph data, the contents of the
domains remain consistent with respect to the original choice, and thus the permissions
apply to modifications as well.

The allowed access of a permission is described with credentials. A credential is an entity
that mediates privileges. The immediate management of permissions is disguised with
Role-Based Access Control. Permissions are granted to roles instead of explicit assign-

90

CHAPTER 11. CONCLUSIONS 91

ments of credentials to users.

The simple permission model enables good performance and conflict-free nature of permis-
sions. On the other hand there is a tradeoff for the simplicity; exceptions to the existing
permissions are not supported. The automatic propagation of permissions enables use of
high-level objects in access configurations, but with the cost of moderate scalability.

Bibliography

[AKS04] Mohammad A. Al-Kahtani and Ravi Sandhu. Rule-Based RBAC with Nega-
tive Authorization. In ACSAC ’04: Proceedings of the 20th Annual Computer

Security Applications Conference (ACSAC’04), pages 405–415, Washington,
DC, USA, 2004. IEEE Computer Society.

[ASW04] Sudhir Agarwal, Barbara Sprick, and Sandra Wortmann. Credential based
Access Control for Semantic Web Services. In AAAI Spring Symposium -

Semantic Web Services, MAR 2004.

[Bar64] P. Baran. On Distributed Communications: IX. Security, Secrecy, and

Tamper-free Considerations. Rand Corp, 1964.

[BC03] Azad Bolour and Bolour Computing. Notes
on the Eclipse Plug-in Architecture, 2003.
http://www.eclipse.org/articles/Article-Plug-in-architecture/

plugin_architecture.html. [Referenced 9.12.2006].

[BCG05] S. Barnum, I. Cigital, and M. Gegick. Failing Securely. Online article,
May 2005. https://buildsecurityin.us-cert.gov/daisy/bsi/349.html.
[Referenced 23.5.2007].

[Ben06] Messaoud Benantar. Access Control Systems: Security, Identity Management

and Trust Models. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[BLH+07] A. Brink, D. Lindberg, M. Hupa, S. Louhenkilpi, S. Wang, T. Fabritius,
J. Riipi, J. Härkki, P. Kangas, P. Koukkari, R. Lilja, R. Pajarre, K. Penttilä,
Kankkunen A., M. Järvinen, C-J. Fogelholm., F. Bergström, and K. Eriksson.
Multi-phase Chemistry in Process Simulation MASIT04 (VISTA). MASI
Technology Programme 2005-2009, Yearbook 2007. Tekes, 2007.

92

BIBLIOGRAPHY 93

[BLP05] Chris Bizer, Ryan Lee, and Emmanuel Pietriga. Fresnel - Display Vocabulary

for RDF, arp 2005. http://www.w3.org/2005/04/fresnel-info/. [Refer-
enced 28.3.2007].

[BS00] E. Barka and R. Sandhu. Framework for role-based delegation models. Com-

puter Security Applications, 2000. ACSAC’00. 16th Annual Conference, pages
168–176, 2000.

[BSJ97] Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. An Extended Autho-
rization Model for Relational Databases. Knowledge and Data Engineering,
9(1):85–101, 1997.

[BW04] Joachim Biskup and Sandra Wortmann. Towards a credential-based imple-
mentation of compound access control policies. In SACMAT ’04: Proceedings

of the ninth ACM symposium on Access control models and technologies,
pages 31–40, New York, NY, USA, 2004. ACM Press.

[CBHS05] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named
graphs, provenance and trust. In WWW ’05: Proceedings of the 14th in-

ternational conference on World Wide Web, pages 613–622, New York, NY,
USA, 2005. ACM Press.

[Con04a] World Wide Web Consortium. OWL Web Ontology Language, Feb 2004.
http://www.w3.org/TR/owl-features/. [Referenced 6.2.2007].

[Con04b] World Wide Web Consortium. RDF Vocabulary Description Language 1.0:

RDF Schema, Feb 2004. http://www.w3.org/TR/rdf-schema/. [Referenced
6.2.2007].

[Con04c] World Wide Web Consortium. RDF/XML Syntax Specification (Re-

vised), Feb 2004. http://www.w3.org/TR/rdf-syntax-grammar/. [Refer-
enced 6.2.2007].

[CW87] D.D. Clark and D.R. Wilson. A Comparison of Commercial and Military
Computer Security Policies. Proceedings of the 1987 IEEE Symposium on

Security and Privacy, pages 184–194, 1987.

[DA06] S. Dietzold and S. Auer. Access Control on RDF Triple Stores from a Se-
mantic Wiki Perspective. Proceedings of Scripting for the Semantic Web

Workshop at the ESWC, Jun 2006.

BIBLIOGRAPHY 94

[DDLS00] N. Damianou, N. Dulay, EC Lupu, and M. Sloman. Ponder: a language for
specifying security and management policies for distributed systems. Imperial

College Research Report DoC 2000/1, 2000.

[DSB+04] M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Hor-
rocks, D. McGuinness, P. Patel-Schneider, and L. Stein. OWL Web Ontology
Language Reference. W3C Recommendation, 10, 2004.

[FK92] D. Ferraiolo and R. Kuhn. Role-based access controls. 15th NIST-NCSC

National Computer Security Conference, pages 554–563, Oct 1992.

[Flo03] L. Floridi. The Blackwell Guide to the Philosophy of Computing and Infor-

mation. Blackwell Publishing, 2003.

[Gru93] T.R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[HBEV04] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF
Query Languages. Lecture notes in computer science, pages 502–517, Oct
2004.

[HM02] J. Hodges and E. Maler. Glossary for the OASIS Security Assertion Markup
Language (SAML), Nov 2002.

[HR78] M.A. Harrison and W.L. Ruzzo. Monotonic protection systems. Foundations

of Secure Computation, pages 337–363, 1978.

[HRU76] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating sys-
tems. Communications of the ACM, 19(8):461–471, 1976.

[Int03] Intellidimension. RDF Gateway - Database Fundamentals, Sep 2003.
http://www.intellidimension.com/default.rsp?topic=/pages/rdfgateway/

dev-guide/security/context.rsp. [Referenced 26.3.2007].

[ISO] ISO/IEC. Information Processing Systems – Open Systems Interconnection
Reference Model, Part 2: Security Architecture.

[Kar02] T. Karhela. A Software Architecture for Configuration and Usage of Pro-

cess Simulation Models: Software Component Technology and XML-based

Approach. VTT Technical Research Centre of Finland, 2002.

BIBLIOGRAPHY 95

[KFJ03] L. Kagal, T. Finin, and A. Joshi. A Policy Language for a Pervasive Com-
puting Environment. Proceedings of the 4th IEEE International Workshop

on Policies for Distributed Systems and Networks, 2003.

[KM01] M.R. Koivunen and E. Miller. W3C Semantic Web Activity. Semantic Web

Kick-Off in Finland, pages 27–44, 2001.

[Lam71] B. W. Lampson. Protection. Fifth Princeton Symposium on Information

Science and Systems, pages 437–443, 1971.

[Leh07] Tuukka Lehtonen. Ontology-Based Diagram Methods in Process Modelling
and Simulation. Master’s thesis, Helsinki University of Technology, 2007.

[MF03] G. H. M. B. Motta and Sérgio Shiguemi Furuie. A contextual role-based access
control authorization model for electronic patient record. IEEE Transactions

on Information Technology in Biomedicine, 7(3):202–207, 2003.

[MK03] R. MacGregor and I.Y. Ko. Representing Contextualized Data using Seman-
tic Web Tools. Practical and Scalable Semantic Systems (workshop at 2nd

ISWC), 2003.

[MS93] J.D. Moffett and M.S. Sloman. Policy Conflict Analysis in Distributed System
Management. Journal of Organizational Computing, 4(1):1–22, 1993.

[MST90] Jonathan Moffett, Morris Sloman, and Kevin Twidle. Specifying discre-
tionary access control policy for distributed systems. Computer Commu-

nications, 13(9):571–580, 1990.

[MV01] G. Mcgraw and J. Viega. Building Secure Software: How to Avoid Security

Problems the Right Way. Addison Wesley Professional, 2001.

[NC00] SangYeob Na and SuhHyun Cheon. Role delegation in role-based access
control. In RBAC ’00: Proceedings of the fifth ACM workshop on Role-based

access control, pages 39–44, New York, NY, USA, 2000. ACM Press.

[Nee72] R.M. Needham. Protection systems and protection implementations. Proc.

AFIPS, pages 571–578, 1972.

[OF06a] Inc. OPC Foundation. OPC Unified Architecture Specification Part 2: Secu-
rity Model, Jul 2006.

[OF06b] Inc. OPC Foundation. OPC Unified Architecture Specification Part 3: Ad-
dress Space Model, Jul 2006.

BIBLIOGRAPHY 96

[oF07] VTT Technical Research Centre of Finland. Simantics - Open modelling and
simulation platform, Feb 2007. https://www.simulationsite/proconf/.
[Referenced 5.2.2007].

[OSM00] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based
access control to enforce mandatory and discretionary access control policies.
ACM Trans. Inf. Syst. Secur., 3(2):85–106, 2000.

[Pop74] G. Popek. A principle of kernel design. l974 NCC, AFIPS Conf. Proc, 43:977–
978, 1974.

[PS07] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for
RDF. Mar 2007. http://www.w3.org/TR/rdf-sparql-query/. [Referenced
15.5.2007].

[QA03] Li Qin and Vijayalakshmi Atluri. Concept-level access control for the Seman-
tic Web. In XMLSEC ’03: Proceedings of the 2003 ACM workshop on XML

security, pages 94–103, New York, NY, USA, 2003. ACM Press.

[RBKW91] F. Rabitti, E. Bertino, Won Kim, and D. Woelk. A Model of Authorization for
Next-Generation Database Systems. ACM transactions on database systems,
16(1):88–131, 1991.

[Roc03] C. Roche. ONTOLOGY: A SURVEY. Proceedings of the 8th Symposium on

Automated Systems Based on Human Skill and Knowledge. IFAC, 2003.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-Based Access Control Models. IEEE Computer, 29(2):38–47, 1996.

[Sch98] Fred B. Schneider, editor. Trust in Cyberspace. National Academy Press,
Washington, DC, USA, 1998.

[Sch00] B. Schneier. The Process of Security. Information Security, 2000.

[Shi00] R. Shirey. Internet Security Glossary. RFC 2828 (Informational), May 2000.
http://www.ietf.org/rfc/rfc2828.txt.

[Slo94] Morris Sloman. Policy driven management for distributed systems. Journal

of Network and Systems Management, 2(4):333–360, 1994.

[SM90] M. Sloman and J. Moffett. Managing Distributed Systems. Univ of London,
Dept of Computing, 1990.

BIBLIOGRAPHY 97

[SM98] Ravi Sandhu and Qamar Munawer. How to do discretionary access control
using roles. In RBAC ’98: Proceedings of the third ACM workshop on Role-

based access control, pages 47–54, New York, NY, USA, 1998. ACM Press.

[SS75] J.H. Saltzer and M.D. Schroeder. The protection of information in computer
systems. IEEE, Proceedings, 63:1278–1308, 1975.

[SS94] Ravi S. Sandhu and Pierrangela Samarati. Access Control: Principles and
Practice. IEEE Communications Magazine, 32(9):40–48, 1994.

[TBJ+03] G. Tonti, J.M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok.
Semantic Web languages for policy representation and reasoning: A compar-
ison of KAoS, Rei, and Ponder. The Semantic WebISWC, pages 419–437,
2003.

[TYW04] Roberto Tamassia, Danfeng Yao, and William H. Winsborough. Role-based
cascaded delegation. In SACMAT ’04: Proceedings of the ninth ACM sym-

posium on Access control models and technologies, pages 146–155, New York,
NY, USA, 2004. ACM Press.

[UBJ+04] A. Uszok, JM Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and
S. Aitken. KAoS policy management for semantic Web services. Intelligent

Systems and Their Applications, IEEE [see also IEEE Intelligent Systems],
19(4):32–41, 2004.

[UG96] M. Uschold and M. Gruninger. Ontologies: Principles, Methods and Appli-
cations. Knowledge Engineering Review, 11(2):93–136, 1996.

[WO06] He Wang and Sylvia L. Osborn. Delegation in the role graph model. In SAC-

MAT ’06: Proceedings of the eleventh ACM symposium on Access control

models and technologies, pages 91–100, New York, NY, USA, 2006. ACM
Press.

[WWng] Anne Wheeler and Lynn Wheeler. Security Taxonomy and Glossary, ongoing.
http://www.garlic.com/~lynn/secure.htm.

[YGMn05] M.I. Yagüe, M.D.M. Gallardo, and A. Maña. Semantic access control model:
A formal specification. Lecture notes in computer science, pages 24–43, 2005.

[YMnLT03] M.I. Yagüe, A. Maña, J. López, and JM Troya. Applying the semantic Web
layers to access control. Database and Expert Systems Applications, 2003.

Proceedings. 14th International Workshop on, pages 622–626, 2003.

Glossary

Access

To interact with a system entity in order to manipulate, use, gain knowledge of,
and/or obtain a representation of some or all of a system entity’s resources. [Shi00]

Access Control

Protection of resources against unauthorized access; a process by which use of re-
sources is regulated according to a security policy and is permitted by only autho-
rized system entitites according to that policy. [Shi00]

Access Control List

A list of subjects authorized for specific access to an object. [WWng]

Access Right

A form of allowed access, for example, READ.

Authenticate

To verify the identity of a person (or other agent external to the protection system)
making a request. [SS75]

Authentication

The process of verifying an identity claimed by or for a system entity. [Shi00]

Authorization

An authorization is a right or a permission that is granted to a system entity to
access a system resource. [Shi00]

Authorize

To grant a principal access to certain information. [SS75]

98

Glossary 99

Availability

The property of being accessible and usable upon demand by an authorized entity.
[ISO]

Capabilities

A list of permissions assigned for a specific object.

Closed Policy

Policy that denies access if there exists a corresponding negative authorization and
allows it otherwise. [AKS04]

Edge

Relation between two nodes in a graph

Entity

Node that is defined by its relations. Same as resource.

Grant

To authorize. [SS75]

Graph

Collection of nodes and edges that form a network.

Identification

An act or process that presents an identifier to a system so that the system can
recognize a system entity and distinguish it from other entities. [Shi00]

Literal

Primitive value: string or numeral, scalar or plural.

Mechanism

Mechanisms are low-level software and hardware functions that can be configured
to implement a policy. [SS94]

Negative Authorization

Authorization permission that forbids access.

Glossary 100

Node

An entity of a graph.

Object

(1) In the context of semantic graph, an object is the field of a statement that refers
to the “destination” node of a relation.
(2) In the context of access control, an object is the field of an access permission
that states the resource whose access is controlled.

Ontology

(1) Philosophically, the study of what might exist. [Flo03]
(2) From the knowledge engineering point of view, an explicit specification of a
conceptualisation. [Gru93]

Open Policy

Policy that allows access if there exists a corresponding positive authorization and
denies it otherwise. [AKS04]

Permission

Access right that is granted to a principle to access a system resource. Permission
is an n-tuple, typically with the following fields: < subject, access right, object >

Policy

Policies are high-level guidelines that determine how accesses are controlled and
access decisions are determined. [SS94]

Predicate

Defines the type of an association. A field in a statement.

Principal

The entity in a computer system to which authorizations are granted; thus the unit
of accountability in a computer system. [SS75]

Privilege

An authorization or set of authorizations to perform security-relevant functions,
especially in the context of a computer operating system. [Shi00]

Glossary 101

Relation

Semantic association between two entities.

Resource

Node that is defined by its relations. Same as entity.

Revoke

To take away previously authorized access from some principal. [SS75]

Role

A job function within the organization that describes the authority and responsibility
conferred on a user assigned to the role. [SCFY96]

Role-Based Access Control (RBAC)

A form of identity-based access control where the system entities that are identified
and controlled are functional positions in an organization or process. [Shi00]

Security

A collection of safeguards that ensure the confidentiality of information, protect the
systems or networks used to process it, and control access to them. Security typically
encompasses the concepts of secrecy, confidentiality, integrity, and availability. It is
intended to ensure that a system resists potentially correlated attacks. [Sch98]

Security Auditing

Auditing is the tracking of actions and activities in the system, including security
related activities. Audit Records can be used to verify the operation of system
security. [OF06a]

Statement

Statement states a relationship between two entities. Statement is typically imple-
mented with a triple.

Subject

(1) In the context of semantic graph, a subject is the field of a statement that refers
to the “starting” node of a relation.
(2) In the context of access control, a subject is the field of an access permission
that states the principal to whom access right is granted.

Glossary 102

Triple

3-tuple. In the context of semantic graph, a triple is a three fielded implementation
of a statement with the following fields: < subject, predicate, object >.

User

A natural person who makes use of a system and its resources for any purpose.
[HM02]

103

APPENDIX A. LAYER0 104

Appendix A

Layer0

Similiarities between Layer0 and RDFS/OWL.

RDF/RDFS/OWL ProConf/Layer0 Description

rdfs:Resource Entity All things are Entities. Entity is
class of everything.

rdfs:Class Named Class Class of resources

rdf:type Instance Of Entity is an instance of class

rdfs:subClassOf Inherits Class is inherited from another
class

rdfs:subPropertyOf Inherits Relation Class is inherited from an-
other Relation Class

rdfs:label Has Name Entity has human readable name

- Object Super class of all objects

rdfs:Literal Property & Value Primitive values are expressed with
Property entities. Properties are
entities that contain values, which
are contains for primitive values.

rdf:Property Relation Super-class of all relations.

rdfs:domain Has Domain Relation class has domain.

rdfs:range Has Range Relation class has range.

Appendix B

RRBAC Relation Class Hierarchy

The figure in the following page illustrates class hierarchy and definitions of Has Access
Restriction relations in Access Restriction Ontology.

� Has All Relation Write/Read/Link/Unlink Access Restricted To - restricts relation
operations but not literal (See Restricts Read/Write/Link/Unlink Of relations in
the class definitions).

� Has Literal Read/Write Access Restricted To - Restricts literal operations but not
relation operations.

� Has Read/Write Access Restricted To - restricts both all relations and all literal
operations (See inheritance).

105

APPENDIX B. RRBAC RELATION CLASS HIERARCHY 106

H
as

 L
ite

ra
l R

ea
d

A
cc

es
s

R
es

tr
ic

te
d

T
o

H
as

 R
el

at
io

n
A

cc
es

s
R

es
tr

ic
te

d
T

o

H
as

 L
ite

ra
l A

cc
es

s
R

es
tr

ic
te

d
T

o

H
as

 L
ite

ra
l W

ri
te

 A
cc

es
s

R
es

tr
ic

te
d

T
o

H
as

 A
cc

es
s

R
es

tr
ic

tio
n

H
as

 A
ll

R
el

at
io

n
U

nl
in

k
A

cc
es

s
R

es
tr

ic
te

d
T

o
H

as
 A

ll
R

el
at

io
n

L
in

k
A

cc
es

s
R

es
tr

ic
te

d
T

o

H
as

 A
ll

R
el

at
io

n
W

ri
te

 A
cc

es
s

R
es

tr
ic

te
d

T
o

H
as

 A
ll

R
el

at
io

n
R

ea
d

A
cc

es
s

R
es

tr
ic

te
d

T
o

H
as

 R
ea

d
A

cc
es

s
R

es
tr

ic
te

d
T

o

H
as

 W
ri

te
 A

cc
es

s
R

es
tr

ic
te

d
T

o

R
el

at
io

n
R

es
tr

ic
ts

 W
ri

te
 O

f

R
es

tr
ic

ts
 R

ea
d

O
f

R
es

tr
ic

ts
 U

nl
in

k
O

f

R
es

tr
ic

ts
 L

in
k

O
f

Appendix C

Domain Ontology

Object Type

Name: Domain

Super Type: -

Restrictions: Domain Consists Of [*]

Has Propagation Rules [0..1]

Description: Domain is an entity level context. It is a container for a set of resources.

Relation Type

Name: Domain Consists Of

Inverse Of: Part Of Domain Super Type: Domain References, Sup-

plies Access Restrictions

Domain: Domain Range: *

Description: This is a relation from domain to its content.

107

APPENDIX C. DOMAIN ONTOLOGY 108

Relation Type

Name: Part Of Domain

Inverse Of: Domain Consists Of Super Type: Referenced By Domain, Ac-

quires Access Restrictions

Domain: * Range: Domain

Description: This is a relation from an entity to a domain it is part of.

Relation Type

Name: Domain References

Inverse Of: Referenced By Domain Super Type: -

Domain: Domain Range: *

Description: This is a relation from domain to content that is implicitely in the

domain.

Relation Type

Name: Referenced by Domain

Inverse Of: Domain References Super Type: -

Domain: * Range: Domain

Description: This is relation from an entity to a domain it is implicitly referenced by.

Relation Type

Name: Has Propagation Rules

Inverse Of: Super Type: -

Domain: Domain Range: Viewpoint

Description: This is a relation from domain to its propagation rules.

APPENDIX C. DOMAIN ONTOLOGY 109

Relation Type

Name: Propagation Source

Inverse Of: - Super Type: -

Domain: * Range: *

Description: This is a relation from an entity to another entity. It describes the route

of propagation. Note Propagation Source relation has domain specific instances. Each

instance has Propagation Source Had Domain relation to its domain.

Relation Type

Name: Propagation Source Has Domain

Inverse Of: - Super Type: -

Domain: Propagation Source Range: Domain

Description: This is relation from Propagation Source instance to the context in

which the propagation occured, the domain.

Appendix D

Concept Ontology

Object Type

Name: Concept Description

Super Type: -

Restrictions: Has Concept Description [1]

Description: Describes a concept. This is used as an annotation to an instance of

Named Class.

Relation Type

Name: Has Concept Description

Inverse Of: Super Type: Concept Consist Of

Domain: Named Class Range: Concept Description

Description: Relation from Named Class to Concept Description.

110

APPENDIX D. CONCEPT ONTOLOGY 111

Relation Type

Name: Has Concept Viewpoint

Inverse Of: Super Type:

Domain: Concept Description Range: Viewpoint

Description: Describes the viewpoint that the concept can inspected from.

Relation Type

Name: Concept Consist Of

Inverse Of: Part Of Concept Super Type: Consist Of

Domain: * Range: *

Description: Class that is used for tagging relation classes. Tags are attached to

classes with multi-inheritance. The tag in a relation implies that the relation also

describes structral dependency between two concepts.

Relation Type

Name: Part Of Concept

Inverse Of: Concept Consist Of Super Type: Part Of

Domain: * Range: *

Description: Same as Concept Consist Of, the structural dependency is part of.

