HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Telecommuni cations Software and Multimedia Laboratory

Marko Luukkainen

Use of 3D graphics for configuration and visualization
of large scale process simulation: ontology-based

approach.

Master's Thesis submitted in partial fulfilment of the requirements for the degree of Master of

Science in Technology.
Espoo, May 10, 2007
Super visor

Professor Lauri Savioja

Instructor

Timo Tossavainen, Ph.D.

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER'STHESIS
Department of Computer Science and Engineering

Author Date
Marko Luukkainen May 10, 2007

Pages

8+96

Title of thesis
Use of 3D graphics for configuration and visualization of large scale process

simulation: ontology based approach.

Professorship Professorship Code

Interactive Digital Media T-111

Supervisor
Professor Lauri Savioja

Instructor
Timo Tossavainen, Ph.D

Traditionally design- and simulation applications have been separated, but extensive use of
simulation to support design process drives to find integration of those. This thesis studies in-
tegration of 3D industrial plant modelling, process simulation and visualization with ontolo-

gies.

The aim was to develop a user interface for 3D plant modelling that supports process simula-
tion and animations required by visualizations. The design focused on usability of modelling
and visualization techniques. As a result, we devel oped a software that can be used for model-
ling equipment of a plant, and parts of the plant, which take account for the process. User may
configure boundary values for the simulation and visualize behaviour of equipment and flows

inside pipes.

Ontology-based approach was used for linking simulators and plant data model: concepts of
3D graphics, 3D plant modelling, and example simulator’ s data structures were represented as
ontologies. Using ontologies enables integrated use of different data models. Here the advan-
tage is that the implementation is not bound to any particular simulator, and other simulators

can be easily added to the system.

Keywords: 3D industrial plant design, simulation, visualization, ontology

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
Tietotekniikan osasto

Tekija Paivays

Marko Luukkainen 10.5.2007

Sivumaara

8+96

Tydn nimi
Kolmiulotteisen grafiikan kayttt laajaskaalaisen prosessisimulaation mallintami-

seen ja visualisointiin: ontol ogiapohjainen ratkaisu

Professuuri Koodi

Interaktiivinen digitaalinen media T-111

Tydn valvoja
Professori Lauri Savioja

Tydn ohjaaja
Timo Tossavainen, FT

Perinteisesti suunnittelu- ja simulointiohjelmistot ovat olleet erillisid, mutta simuloinnin laaja
kayttd suunnittelun tukena vaatii simulointiominaisuuksien integrointia suunnitteluohjelmis-
toon. Tama diplomityo tutkii kuinka 3D-laitosmallinnus, prosessisimulointi ja visualisointi

voidaan integroida ontol ogioita kayttaen.

Tyon tavoitteena oli kehittéa 3D-laitossuunnitteluun soveltuva kéyttdliittyma, joka tukee pro-
sessisimulointia ja visualisoinnissa tarvittavia animointgja. Suunnittelun painopisteena oli seka
kaytettavyys, etta visualisointitekniikat. Tyon tuloksena syntyi ohjelmisto, jolla pystyy mallin-
tamaan prosessiteol lisuuslaitoksen laitteet ja itse laitoksen prosessiin osallistuvat osat, séétéa
simuloinnin rgja-arvot, seka visualisoimaan laitteiden ja putkissa kulkevien virtausten kayttay-

tymista.

Simulaattorien kiinnittdmiseen laitosmallin kaytettiin ontologia-pohjaista ratkaisua: seké kol-
miulotteisen grafiikan, kolmiulotteisen laitosmallinnuksen ja esimerkkisimulaattorin késitteet
kuvattiin ontologioina. Ontologioiden kayttd mahdollistaa eri tietosisaltdjen yhteiskayton, ja
téssa tapauksessa toteutus el ole sidottu yksittéi seen simulaattoriin, vaan uusien simulaattorien

kaytttonotto jarjestelméssi on hel ppoa.

Avainsanat: 3D-laitossuunnittelu, simulaatio, visualisaatio, ontologia

Acknowledgements

| want to thank my supervisor professor Lauri Savioja for his input, and instructor Timo Tos-
savainen for valuable guidance with the thesis.

I would like to thank entire Simantics platform development team, Toni Kalgjainen, Kalle Kon-
delin, Tuukka Lehtonen, Antti Villberg, and our team leader Tommi Karhela. Without you this
would not have been possible.

I would also like to thank Petteri Kangas for his valuable help with example bleaching line
simulation.

Finally, I would like to thank my parents, my sister, and my friends to whom | never tried to
explain what | was writing about.

Espoo, May 10, 2007

Marko Luukkainen

Table of Contents

1

L g LA o]0 (¥ Tox AT o o FO PSPPSR UPRO PSPPI 1
T T = 3o oo o = PSRRI 2
12 SHUCKUIE. ...ttt e e e an e r e e s ne e e s nn e e s nnreesneeennneeens 2

2 7= (0] o S 3
2.1 ProCeSS SIMUIBLTONcuviiiieiec e 3
2.2. [=8 0700 = 1 T o TS 4

221 [P2 R 1= o OSSPSR 4

2.2.2. PIPE ClASSES. ...ttt ettt e e et eeneeeen 5

2.23. Benefits of 3D MOAEliNgcoooeeeiiiieie e 6

2.24. An example of plant design SOftWare............coocveiiiiiee e 6
P2 T | B B | 0 = =T (o o OSSO R U ROPR PR 8

231 Object ManipPUIBLIONc.eiiiiieiee et 9

232 Viewpoint HanliNgcooeieiieeee et 13
P22 S S o o I 0o o = 11 oo S 14

241 Data repreSentalioncoeceeeiiereeiee e 15

2.4.2. Parametric MOE!iNg........oooiiiee e e 16

243 Initial Graphics Exchange SpecifiCationcccoveeeicerenee e 18

244, Standard for the Exchange of Product Model Data (1SO 10303) 19
2.5. Data ViSUBII ZBLIONcccueeieieiiieiie ettt nnne e 20

251 ANiMation tECANIQUES.........ocueiiiee e 20

252 FIOW VISUBHIZBETON......ceoiieiiieieesee e 21

253 Visualization of large, complex 3D MOdElSc.eevveiiiiieiee e 21

254 Visualizing manufacturing simulation with animationcccecceevceeennenne 24
2.6. Ontology based programming and modelling..........ccooceeiieeiiieniee e 24

2.6.1. COMMUNICAEION. ...ttt r e e e e e nnneenees 26

2.6.2. INEEr-OPErabDility ...c.oceeeeieie e 27

2.6.3. SYStEMS ENGINEEITNGeieiiieeeee ettt 28

2.6.4. Information represented by ontolOgies.ooovviiiiiiiii e 28

2.6.5. Design process, criteriaand evaluation.ccceeveeeeieeneniee e 29

2.6.6. Resource Description FrameworK...........coovee e 31

2.6.7. Weh Ontology LanQUAaGE.coeoueeeiieeeiiee e e e 32
2.7. Using ontologies with graphics and sSimulation ... 32

2.7.1 Linking graphics to domain ontolOgies.........coevveeeiiereiee e 32

2.7.2. Linking graphics to simulation CONCEPLS........oovieerriiee e 34

3.

2.7.3. Semantics based geometric SIMPlifiCationccocveiieriiiiiesie e 34

REQUIrEMENT NEIYSIS.eeeeiiiee ettt sttt e e sne e e sne e e snteeenneeeenneeas 37
3.1 Functional reqQUITEMENESooiiiieiee e e s e e enes 37
3.2, TechniCal reUITEMENES.ceie e eiee ettt s e e snee e e e e sne e e sneeeeneeeenees 39

Implementation PIatfOrM..........oo e 41
O I Y= O TSR 42
4.2. (WS N o o] o= (o] o 45
4.3, Ontology DeVEIOPMENT........c.eiiiiiee et 46
4.4, 2T o @ g1 o Lo 1 =S a7
4.5 Data ViSUBII ZBLIONccueeiiiiiieiieiee ettt 48

37 o [49
L3Nt T 7= 0= =0 o S 49

5.1.1 LY7o L= T o S 49

512 L 411072 o] PRSPPSO 51

513 ParamELEriSAION.c..eeieieiiieiee e 51
52 PrOCESS EQITON ...t 51

5.2.1 Process MOAENliNGooieie e 51

5.2.2. Mapping the plant model to a simulation model............ccccooceeeiieicineieeee, 53

5.2.3. Configuring and visualizing SImMulationccoocceeiieeniiienee e 53

(101 =: 00T 01 7= 4 o] o T 55
6.1. Used SOftWare COMPONENESooiiieeieee e erieeeeceeee e reee e e seeeesee e e smeeeesneeeennes 55

6.1.1. 1 =R 55

6.1.2. OPENCASCADE ... s nae s 56
LA o< 1o =) o S 56
LG TS 7= 0= =l o 58

6.3.1. GBOMELTY ...ttt e e e et b e e e e s sb e e e e sabe e e e e anreeeens 59

6.3.2. ANTMBLION ... n e 61

6.3.3. Parameterization Of QEOMELIYcueiiiiiiiiiee e 63
6.4. PrOCESS EQITON ...t 65

6.4.1. Plant modelling ONtOlOgYcoeieeririee i 65

6.4.2. Pipeine MOdellingccooeie i 66

6.4.3. Plant mode ling User iNterface.........cccov i 76

6.4.4. Simulation configuration and visualization............cccecceeviieiiieeeiee e 77

ANAlYSIS AN DISCUSSIONc.ueiieiieieeeieeeieeeeee e seee e et e et eesaeeeeteeesmteeesneeeenneeesneeeesnseesnneens 79
7.1. Anexample of simulation configuration and visualization: bleaching line............... 79
7.2. Evaluation against reqQUIrEMENTScoooeieiieeeee e eee e s e e 81

7.2.1. Equipment modelling and animationccccoceeieriiien e 82

Vi

7.2.2. Plant MOAETINGoooieiiiie e 82

7.2.3. Simulation and ViSUali ZatioN...........cooiereiiee e 83
7.3, GENEA ANAIYSIS ...ooiiiieiiiie et e et e e e e e e ree e e neeenes 84
7.3.1 (01 o 1 2SS 84
7.3.2. 0oz = o 1L YU 85
74. FULUNE WOIK ...ttt e e e st e e eneeeennes 85
7.4.1. Other use cases for 3D modelling and 3D Plant Moddccccoeevieieiennee 87
L0000 11 o]0 S 89

Vil

Abbreviations

B-rep
CAD
CAM
CSG
DAML

IGES

LOD
OIL
OPC
OWL
RDF
STEP
VRML
wa3aC
X3D

XML

Boundary Representation

Computer-aided Design

Computer-aided Manufacturing

Constructive Solid Geometry

TheDARPA Agent Markup Language

Initial Graphics Exchange Specification
International Organization for Standardization
Level of Detail

Ontology Inference Language

OLE for Process Control

Web Ontology Language

Resource Description Framework

Standard for Exchange of Product Model Data
Virtual Reality Markup Language

World Wide Web Consortium

Extensible 3D

Extensible Markup Language

viii

1. Introduction

Use of simulation has increased in process industry. Built plants have been getting more com-
plicated, and requirements for simulation have grown. Today it is common that when new plant
is designed, designs are tested and verified using simulators. Typical simulators contain their
own user interfaces and their own data structures, and transforming modelling data to simulator
compatible form is seldom automatic. Usually a plant model has to be redone for the simulator,
increasing effort to use simulator and possible errors in simulator’s model. In a common sce-
nario, various systems in plant have been modeled with different software, which further in-

creasesrisk of error.

Currently, the most common way to create a model for process simulation is to use two dimen-
sional diagrams. At the same time, nearly all new built plants and changes to old plants are de-
signed with some 3D modelling software. Combining 3D modelling with simulation combines
advantages from both: Two-dimensional diagrams cannot show physical properties of the mod-
elled process, but 3D models are similar to real world objects. 3D-modelling comes especially
handy when sizes of objects are needed by the simulator. In 2D-diagrams numbers must be
given explicitly, whereas in 3D-modelling al dimensional values are already in the modelled

process.

Because simulators are used for testing and verifying the functionality of the modelled process,
it is more practical to include simulation within the modelling software. This would allow an
engineer to test his design earlier and improve his understanding of the modelled process and its
behaviour. The improved understanding leads to better design practices and results in savings in
time and money. In understanding the process and its behaviour, visualization is important. An-
imations and other visualization techniques can improve perception of simulation results over

text-based numeric information or separate 2D graphs.

Ontology-based knowledge representation has gained popularity because of its flexibility and
expressive power. Here using the ontol ogy-based approach has critical advantages: 3D model-
ling user interface does not have to be bound to any particular simulator nor any particular simu-
lator type. Instead, simulators can be linked to 3D model’ s data structures, and the same visuali-
zation package can be used with many different simulators and the same 3D moded with multi-
ple simulators. This is required, because different simulators are used in different stages of the
modelling process: First mass and energy balances are simulated using steady state simulation;
later dynamic simulation can be used for various purposes, including testing plant’s behaviour

in changing conditions, and in operator training.

1.1. Goalsand Scope

Our goal is to represent how 3D plant modelling interface can be used for configuring process
simulation. This includes creating a simulation model from 3D plant model, configuring simula-
tion input values (boundary conditions), and visualizing the simulation. Visualization includes

equipment states and flows in pipes.

The aim of this thesis is to make tools that can be used for modelling equipment, components
and pipes. The aim is not to make full scale 3D plant modelling software: we omit electrical,
structural and other modelling features that are required when actual plant is built according to
3D model, because those do not affect the industrial process and therefore they are not useful
for process simulation. Also piping functionality will be reduced: flanges and other pipeline

components that are part of pipeline, but do not affect the actual process will be left out.

1.2. Structure

Background, related research, and common concepts of the area are represented in chapter 2. It
includes wide range of subjects: process simulation, plant design, 3D interaction, solid model-
ling, visualization, and finally ontologies. Chapter 3 presents requirement analysis. what the
system should be able to do and why. Simantics platform, which is used in implementation, is
presented in chapter 4. Chapter 5 discusses the design, and chapter 6 presents the implementa-

tion. Analysis of the work and result are in chapter 7, and conclusions arein chapter 8.

2. Background

This chapter begins with a brief explanation of process simulation, and plant modelling, since
both of them are the basis of this work. In section 2.3 we discuss about 3D interaction, because
our purposeisto design and implement 3D user interface for modelling plants. In section 2.4 we
discuss about solid modelling, because it is widdly used in the industry, and provides means to
create parameterized geometries. Since visualization of the simulation is another major goal, in
section 2.5 we discuss about that. In section 2.6 we present ontologies, and discuss how they are
beneficial in combining different data models together. Then, in section 2.7, we discuss ontolo-
gies and their usage in graphics representation and linking graphics to domain and simulation
models.

2.1. Process Simulation

Before presenting process simulation, we start by defining process industry and simulation.

ISO’'s STEP (Standard for the exchange of product model data) application protocol 227 Func-
tional data and their schematic representation for process plants (AP227) defines processes as
activities that operate on process materials. In the discrete manufacturing industry, these process
materials are often solids, but in the process industry they are often fluids. We will use defini-
tion of AP277 for process and process industry. The process industry includes power plants,

pulp and paper mills and for example ail refineries.

Braunschweig and Gani (2002, section 3.3) cited two sources for definition of simulation:
“The study of a system or its parts by manipulation of its mathematical presentation or its physi-
cal model”, and “ The imitation of a physical process or object by a program that causes a com-
puter to respond mathematically to data and changing conditions as though it were the process
or object itself”. From these sentences, we can conclude that simulation is the solution of a
model of a system with a computer, and that modelling means construction of a mathemetical

representation of a system.

Process simulators are usually ether steady state or dynamic. Steady state ssimulators calculate
time independent values for a process, thus for one set of input values simulator calculates al-
ways the same output. Steady-state can be described as a condition, where the properties of a
system at each point are constant in time (Braunschweig and Gani 2002, section 3.3.1.2). This
means that the process is first configured for the simulation, then the simulator is run once, and

finally the interpretation of calculated values can begin. Typically they are used in the early

design phases to calculate mass and energy balances, so that designer can verify that his model
works as expected. One example of steady-state simulators is Balas (Balas, 2007), that focuses
on pulp and paper industry.

Dynamic simulators calculate time dependent values for a process, and typically the values vary
over time. Use cases for dynamic simulation are different from steady state simulations. While
steady state simulation can provide basic operation conditions for a plant, dynamic simulation
can provide further information on how the plant behaves under operational mode change, or
how to keep it under certain operation mode (Braunschweig and Gani 2002, sections 2.1.5 and
3.3.1.2). Dynamic simulation can be used for instance for training of operators (training simula-
tor), and for testing automation systems. One example of dynamic simulators is Apros (Apras,
2007), which has been used in multiple different cases, including optimizing pulp mills and

training simulator of nuclear power plant operators.

2.2. Plant modelling

This section represents traditional design flow of an industrial plant, position of 3D modelling in
it, benefits of 3D plant and pipe modelling versus traditional 2D CAD drawings, and last one
example application used widely in industry.

2.2.1. Plant Design

Typical plant design process consists of three steps: conceptual design, process design, and de-
tailed design. These steps are sequential, and information gained in the previous step is used in
the next step.

The design process starts with conceptual design. In that phase major process units required to
achieve the end result are selected. Basic thermodynamic information is required to determine

approximate operating conditions. Conceptual design uses steady-state simulation.

Next step in the design process is process design. The major process units are decomposed into
smaller groups of units with more equipment and detail. Reasonably precise operation condi-
tions are determined. Mostly steady-state simulation is used, but using dynamic simulation can

provide advantages in designing the basic control scheme for the plant.

Detailed design is done after process design. It completes the equipment specifications and the
3D layout for the plant. Also complete PIDs (Piping and Instrumentation Diagram) and con-

struction diagrams are made. Simulation can be used for operator training, plant commissioning

and online applications (Braunschweig and Gani 2002, sections 3.3.2 and 2.3).

2.2.2. PipeClasses

Piping includes components like pipe, ebows, flanges, fittings, bolting, gaskets, valves, and
pressure containing portions of other components. It also includes pipe hangers, supports and

other items necessary to prevent overpressurization and overstressing of pressure containing

components.
Pipe Elbow Collar Cap Reducer Tee
L C _ 02
- E +%
- e A }
’ l aE
d /// D —
. - R IR
[% I A T

Figure 1: Typical piping components.

Currently used standards to describe size of piping are diameter nominal (DN) and nominal pipe
size (NPS). DN is given in units of metric system, and it is developed by 1SO. NPS uses inches
and it is developed by ASME (American Society of Mechanical Engineers). DN or NPS does
not directly trandate to outer diameter of pipe. This comes from previous ways to describe
pip€'s size with inner diameter, but when wall thickness started to vary because of required
pressure tolerances, acid- and corrosion resistances, and used materials, a measurement for de-
scribing both pipe diameter and wall thickness was needed. Real outer diameter and wall thick-
ness for pipes are described in pipe class standards. ASME and ISO have their own standards;
different countries may havetheir own standards, for example Finland has own pipe class speci-
fications by Finnish Standard Association SFS. Typical components used in piping and some
measurement that are specified for each pipe size and each pipe type are in Figure 1(Nayaar
2000, SFS 123, 2000).

2.2.3. Bendfitsof 3D modelling

Piping Handbook (Nayyar 2000, section B.3) mentions several benefits of CAD applied to a
piping system. One of the benefits is interactive design. When CAD-system allows interactive
routing and modification of piping, it improves productivity of the designing. If the 3D-CAD
system does not support interactive design, another step in the modelling process is necessary,
because 3D modd must be created according 2D drawings. Not just any interactivity will suf-
fice: The CAD system must be designed for 3D pipe design to gain productivity. Another great
benefit of CAD is interference checking. Using it on 3D-model is more practical than using 2D-
drawings. It can be automated, and designer can fix the errors when the interference checking
founds them. Checking hard interferences (metal-to-metal) is not enough; also personnel access

equipment and for maintenance should be checked.

Benefits related to construction of a plant are drawing generation and billing system. Drawing
generation is needed, because isometers and orthographic drawings are required in various de-
sign- and construction stages. The 3D CAD-system should be able to generate those drawings
automatically or semi-automatically. An automatic billing system that keeps track of prices of
used components is of great benefit, when the price of construction is to be kept as low as pos-
sible. When combined with interactive design, the modeller may test various designs and select

the cheapest one.

The 3D CAD application that is used for pipe modelling has requirements. One critical part is
training and implementation, since 3D-modeling is generally more complicated than 2D CAD
processing. Therefore the needed expertise should be available to use the full potential of 3D
piping software, and to train others to use the software. Using 3D-modelling aso changes the
design process. 2D drawings are not available until the 3D-model has been created and the 3D-
model must be used for design review, including walkthrough views of the model. Software
interface to other system is needed, because other stages of design- and construction process

need the 3D-model and one must be able to export it to other systems.

2.2.4. Anexample of plant design software

SmartPlant3D is Intergraph’s latest 3-dimensional plant modelling software (Intergraph, 2007).
The application is database driven: One database contains al the information of a plant. It has

been designed to work in multi-user environment.

The software contains viewpoints (tasks) that are used for modelling certain aspect of a plant.
For example the Piping task is used for routing and modifying piping and inserting, removing
and modifying inline components, the Systems and Specifications is used for managing structure
of plant and specifications for parts that are used in the model, and the Drawings and Reports
task is used for creating isometers, snapshots and various reports, for example a part list. The
user interface updates according to the selected task. For instance, in Figure 2, SmartPlant3D is
Set to piping task mode and it shows tools that are used for routing pipe, tree view of the struc-
ture of the plant, and 3D view, but in the systems and specifications task, Ul does not have the
3D view at all.

T

Figure 2: User Interface of SmartPlant3D. All equipment and com-
ponentsarelisted in tree view on the right, and available tools for
modelling for current task areon theleft.

The reason for the strict division between different tasks is access rights. Each designer has his
own area of responsibility and is not allowed to perform changes in other parts. For example the
designer who is responsible for routing pipes for a certain area of the plant may not change pip-
ing specifications, or add new pipeline systems or pipelines to the plant. The lead designer adds
necessary pipeline systems and pipelines, and only pipe routing is done by other designers.

Since designed plants are large, the designer must have a way to select what he can see and
what is relevant to his current task. Too many visible components just complicate the design
process and slow down the program. For this SmartPlant3D uses filters. Filters can filter plant
components by several criteria, like system, permission group, spatial (volume) and object type.

The user can save and load filters and so he can quickly change what he sees.

All equipment and components in SmartPlant3D are stored in a catalog where all models are
reusable. The user has the capability to model new equipment, which cannot be parameterised.
Parameterized geometry is created with Visual Basic by coding.

To ease modelling SmartPlant3D employs context dependent aids called SmartSketch. Smart-
Sketch is used in every modelling aspect to help the designer to select right objects. Theideain
SmartSketch is simple: The mouse cursor changes, when something relevant to current model-
ling action is below it. Thisis used in tasks like routing pipes along axes, placing objects paral-

lel or perpendicular to each other, finding divisors in pipes and structural components.

SmartPlant3D hast two ways to check interferences between objects: server-side and client-side.
The client application does client-side checking and provides instant feedback, if the designed
objects interfere with other objects. Client-side interference checking has one major setback: It
only checks new and modified objects against visible objects. This means that if the user does
not have the whole plant visible, which is quite uncommon, then possible interferences will not
be found. Server-side interference checking is a constant process that runs on the database
server, or dedicated server. Itstask is to find interferences on the whole plant level and to keep a
list of interfering objects, so that designers can solve problems. Interference checking is divided
into two parts because doing plant level interference checking on client application would be too

computationaly intensive.

2.3. 3D Interaction

Traditional ways to interact with computer are WIMP (Windows, Icons, Menus & Pointing de-
vices) interfaces. When interacting with 3D environment, these concepts do not work all the
time, but in typical CAD and CAM programs, it still is the prominent way to create user inter-

face.

3D Interaction can be divided into three distinct cases (Hand 1997): object manipulation,
viewpoint manipulation and application control. Also, there are two distinct phases in the devel-
opment of 3D interaction techniques: 2D mouse and interfaces based on true 3D input devices.
Since 2D mouse is gtill the dominant interaction technique in current engineering applications,
in the next three sections we focus on describing it and how recent research has handled mouse
and keyboard interaction in 3D.

Application Control describes communication between user and system that is not part of the
3D environment. Hand (1997) finds this topic to be the least popular research topic of the three
interaction types. Here 2D interfaces are usually sufficient. Therefore the problem is more re-
lated to full 3D interfaces, where user gives input using 3-DOF or 6-DOF devices like data

gloves. Hence, the problem is not relevant for our topic and is not discussed here.

2.3.1. Object Manipulation

Object manipulation is defined as trandlating, rotating, creating, deleting, modifying, etc. of ob-
jectsin a 3D environment. Some of these actions are comparable to real-world cases, and others,

like deleting objects, are impaossibleto achieve.

Eric Bier (1986) used Skitters and Jacks to describe transformations. The Skitter is a cursor that
shows pasitive unit vectors for each axisin 3D (Figure 3). The direction of axes defines an ori-
entation and the origin of axes describes a point in 3D. The Jack is similar, but with axes ex-

tending to both negative and positive directions.

The basic principle of their use is that a user can place the skitter to surfaces of objects, centre
points of abjects, and in free space. Then he can add a jack to the position of the skitter. Moving
of the skitter has four modes: In the first mode, the skitter is placed on the front face of an ob-
ject, directly underneath mouse cursor. In the second mode, the skitter is placed on a back face
of the object. In the third mode, the user can point centre positions of objects, and in fourth
mode, the skitter moves along the three major axes relative to the selected jack, or in any of the
three planes of thejack. Like with faces, the skitter is placed underneath the mouse cursor if it is

possible, elseto nearest point of it.

Figure 3: Skitter (left) and Jack (right). The skitter isused asacursor in 3D,

whilethejack isused form marking positions and orientations (Bier 1986).

After the user has positioned the jack, it and skitters can be used for trandlating and rotating ob-
jects. Bier described several ways to do both. These actions were divided into discrete and

smooth motion transformations: discrete actions move and rotate objects instantly to position

that the action describes, and smooth motion actions changes transformation interactively. Dis-
crete actions included moving object along jack’s axis until its coordinate value on that axis is
equal to the other selected jack’s, and moving an object to a position where a jack on its surface
is coincident with an other jack. In practice each object’s centre position could be used as a
jack, and moving objects relative to each other without placing jacks first was possible. Bier's
implementation included only smooth translation of objects, either on a plane parald to the
view plane or on a plane of a jack, but most discrete actions could be transformed into smooth

actions.

Nielson and Olsen (1986) used similar cursors; the skitter was called the triad cursor and the
jack was called the full space cursor. They also described how 2D mouse coordinates can be
mapped to 3D coordinates relative to the triad cursor, giving ability to trandate objects in 3D
using the mouse. Therefore the user could control the plane along which he wants to trandate
objects by clicking on the proper position of the triad cursor instead of separately selecting the
plane like in Skitters and Jacks. In their paper, rotations use axis and angle representation. When
user rotates an object, hefirst selects an axis by selecting one of its edges or a normal of its face,
and after that giving the angle by selecting two points (Figure 4). Likewise the user could input
more precise translations, in comparison to triad cursor, by selecting two points on the same

edge or on the same face.

ey s

Figure 4: Trandation and rotation mechanisms. Trandation can be described by giving two points,
either on the same edge or on the same face. Likewise rotation can be described by giving two

points and edge or three points on the same face. (Nielson 1986)

Skitters and Jacks developed further to Snap-Dragging (Bier 1990), which combined several
previously introduced idess of gravity (snapping), alignment objects and interactive transforma-
tions. The gravity function was created with a three-dimensional cursor, the snap-dragging skit-
ter, which snapped to points, curves, and surfaces at a certain distance in screen space. The user
could select the preferred order of snapping, e.g. try to snap points before edges. To control
snapping there were three types of alignment objects: lines, planes, and spheres. The alignment
was controlled using alignment values that were selected from menu. The selection of a value

created one or more alignment objects. When alignment objects were added, intersection points

10

and intersection curves between objects were calculated and both alignment objects and their
intersections could be used for snapping. To make the system more usable, in addition to manu-
ally added alignment values, the intersection could be calculated from objects in the 3D envi-
ronment. For example vertices could be used as centre points of alignment spheres and distances
between vertices asradii. Moving of objects was implemented so that if the cursor was not close
enough to any of alignment objects, then the object moved along the default plane, which was
paralld to the screen. The system allowed the user to move objects into contact with each other,
to rotate objects so that their edges were coincident, etc. using the mouse as the only interaction

device.

While the previously mentioned techniques can also handle the orientation of objects, there has
been some research done on orienting objects in 3D. The most recent evaluation of orientation
techniques using the mouse (Henriksen et a. 2004) describes three different ways. Chen et al.
(1988) originaly tested multiple ways to control orientation. One of them was a virtual track-
ball. Ken Shoemake (1992) created an arcball, and Bell created virtual trackball. Henriksen et
al. show that Shoemake's and Bell’s methods are variations of Chen’s design. The only major
change is mapping between 2D-mouse coordinates to object’s orientation. In technical way,
Shoemake' s approach avoids hysteresis, where “ closed loops of mouse motion may not produce
the closed loops of rotation”. When the mouse is moved back to its original position, the orien-
tation is not the same as in the beginning. Hinckley et al. (1997) compared Chen’s virtual track-
ball and Shoemake s arcball, finding no distinguishing features between them: time used in test
cases and accuracy was nearly same and some of tested user did not even notice difference be-

tween them.

Phillips and Badler (1988) created a user interface, called Jack, for manipulating articulated fig-
ures. Translating of objects was done by mapping each of the three mouse buttons to one of the
global axes. Holding down one button down transated the object along an axis, and holding
down two buttons translated along a plane. Holding down all three mouse buttons had no effect,
because the system was not able to map 2D mouse coordinates to 3D position. The actual posi-
tion was calculated using 2D mouse coordinate to cast a ray to 3D and calculate intersection
between the ray and axis direction or plane when two buttons were hold down. When the user
translated an object along axis, its position was set to the closest position along tranglation axis
and mouse ray, which allowed moving mouse cursor everywhere on screen. When the user
translated an object along a plane, the object was positioned exactly under the mouse cursor.
Rotation was handled in the same way: Buttons were mapped to rotation axes and the rotation
angle was calculated using intersection point between mouse ray and plane defined by reference

point and origin of the rotated figure. In both cases the user was shown the axis on which he was

11

trandlating, or the direction about which he was rotating object using arrow symbols. The
method using mouseray is similar as in Bier's skitters and jacks, where the position of the skit-

ter was placed underneath the mouse cursor when it was possible

While these actions provided a flexible way to transform objects, other means were needed to
input precise transformation. Jack implemented two different ways to achieve this. The first
method was to input transformation values using keyboard. The second method was snapping

translation to selected face, edge or vertex and rotation to selected face or edge.

Stephanie Houde (1992) performed usability tests on hand-style cursors and bounding boxes
with handles. She found that there were many different preferred ways to move objects from
place to place (sliding vs. lifting) and rotating objects. Users had expectations on how objects
should move, based on identity of the object. In Houde' s case users were interacting with furni-
ture, and expected tat the behaviour of chair is different from pictures since chairs lie on floor
and pictures are hanging on wall. According to her Bier’s Skitters and Jacks and virtual sphere
by Chen are not sufficient for space planning systems where smooth switching between sliding,

lifting, and turning actionsis desired.

In order to achieve rapid changes in actions, Houde tested several different concepts. In the first
case furniture had active areas where certain actions could be activated. For example, clicking
on a standard lamp’ s neck would activate lifting so that the lamp could be moved, but if the user
clicked the top of the lamp rotation would be activated. While the system allowed rapid changes
in actions, users had difficulties to select the action desired. Active areas were not self explana-

tory, and different users expected them to be in different positions.

Next, she changed the interface to show active areas when piece of furniture was selected by
showing hand icons as narrative handles for each action over active areas. The user could select
the desired action by clicking the appropriate handle. This interface had problems with intuitive
location of handles: For some of the furniture it was too difficult to decide where handles should
belocated, and still users had different expectations where they should be.

The next method that Houde tested was attaching handles to bounding boxes of furniture. When
a piece of furniture was selected, a bounding box with handles appeared. Previoudy, the user
could sdlect desired actions using handles. The handle for lifting was on top of the bounding
box and handles for rotation were in the box’s bottom corners. Sliding operation did not have
handles, since users preferred to click and drag the object itself, most likely because 2D-

interfaces behave similarly. For better usability, only handles that are possible actions to se-

12

lected object appeared. For example, a picture on the wall cannot be rotated, so rotation handles
are not visible. The system also restricted rotation capabilities of other furniture, since in space

planning system it is unacceptable to tip them over.

2.3.2. Viewpoint Handling

Viewpoint manipulation includes movement in 3D, zooming, and changing field of view. It is
especially critical in modelling applications, because the user has to see what he is modelling
(Phillips et a. 1992).

Mackinlay, Card & Robertson (1990) classified four different viewpoint movement types:
General Movement: Exploratory Movement, such as walking through a simulation of an
architectural design
Targeted Movement: Movement with respect to a specified target, such as moving in to
examine detail of an engineering model.

Specific coordinate movement: Movement to a precise position and orientation, such as
to a specific viewing position relative to a molecule or a CAD solid modd.
Specific trajectory movement: Movement along a position and orientation trajectory,

such as a cinematographic camera movement.

The Jack system (Phillips and Badler 1988) has simple set of routines for viewpoint manipula-
tion: sweeping, panning and zooming. Sweeping is an action, where the user can rotate the view-
point around a selected reference point while keeping viewpoint focused on it. Panning is also
rotation, but when the view is rotated, its position is kept the same and the view direction
changes. The zoom action translates viewpoint along its line of sight towards the focus point,

and it could be used simultaneously with sweep.

Mackinlay et a. (1990) developed a viewpoint manipulation technique that was capable of mov-
ing large distances quickly and short distances accurately. The key idea was that user has se-
lected a point of interest (POI) and viewpoint is moved relative to it. Movement speed depends

logarithmically on the distance to target, being slower when closer to target and vice versa.

Controlling of the viewpoint required two different actions from the user. Using the mouse to
select and update the POI, and using the keyboard to indicate movement direction, forward or
backward. Viewpoint is moved towards or away from the POI. Another way to move the view-

point was called orienting POl movement, where the viewpoint moves towards the object’s sur-

13

face normal at the POl and simultaneously rotates the viewpoint to face the POI. When the

viewpoint is manipulated this way, distance to POI does not change.

They added more features to improve usability by locking the POI to selected object when
viewpoint was moved, which prevented the user from accidentally to select wrong POI. Another
improvement was hovering over the POI by pressing both forward and backward keys down at
the same time. This allowed inspection of abject’s surfaces, similarly to scrolling in 2D. While
this method was considered a good way to manipulate the viewpoint for targeted viewpoint
movements, usability degenerates for movements where there is no appropriate object to anchor

the movement.

Tan, Robertson, and Czerwinski (2001) combined traditional flying with a method called orbit-
ing. Orbiting is similar to POl movement, but instead of using the intersection point of mouse
ray and the objects surface, the sdected abject’s centre was used as the POI. The user could ro-
tate around object and zoom towards it by dragging. He could select between flying and orbit-
ing: if dragging started over an object, then orbiting movement was chosen. Likewise if nothing

was under mouse cursor, flying mode was chosen.

To increase usability, automatic viewpoint handling is possible. Phillips, Badler, and Granieri
(1992) used it to aid modelling. Automatic viewpoint handling was used with object manipula-
tion and when it was used, the viewpoint was turned to a better position, either because transla-
tion axis was too close to view’s direction or other object was occluding the modified object.
They also noted that some viewpoint properties are better modified by the user only. One exam-
pleis zooming factor, because it is related to user’s preferences. Other cases where automatic
viewpoint handling must be turned off is when the user has positioned viewpoint paralld to co-

ordinate axis for 2D view of the model.

24. Solid modelling

Solid modelling is widely used in the industry, because it provides precise representation of ge-
ometry and it is basis for more advanced modelling techniques: feature-based and parametric
modelling. Our interest to thetopic is twofold; parametric modelling provides better reusability
of geometric models of equipment, and existing geometric models are commonly in some solid

modelling format.

14

2.4.1. Datarepresentation

Currently there are two major representation schemes in solid modelling. Constructive solid ge-
ometry (CSG) defines solid objects as set-theoretic Boolean expressions of primitive solid ob-
jects. Both the surface and the interior of an object are defined, albeit implicitly. A boundary
representation (B-rep) describes only the oriented surface of a solid as a composition of vertices,
edges and faces. The orientation can be used for deciding which side of surface is towards the
solid's interior, if the object is a bounded volume (Hoffman 1994). CSG and B-rep have differ-
ent strengths and weaknesses. A solid constructed using CSG is always valid; its surface is al-
ways closed and orientable and encloses volume. B-rep modd may not be closed and therefore
not a solid, but B-rep enables a less restricted modelling scheme. Therefore both representations
are often combined into single dual-representation modellers.

CSG is a method of representation, a design methodology and a certain standard set of primi-
tives. A CSG object is built from the standard primitives by compaosing them using regularized
Boolean operations: union, difference, and intersection. Regularized Boolean operations differ
from set-theoretic ones in that the result is the closure of the operation the interior of the two
solids, and unwanted lower-dimension structures are removed with them. Union operation is
used for adding shapes together, intersection is used for subtracting shape from another shape,
and difference takes the common part of the shapes (Figure 5). Geometric model’s structure is

then represented as atree where leaves are primitives and interior nodes are Boolean operations.

OFO

Figure 5: CSG Modelling: Union, intersection and difference of box and sphere. Difference of two

objects can be done two ways: in third picture from left sphereis subtracted from box and in fourth
picture box is subtracted from sphere.

Boundary representation can describe a solid unambiguously. Surfaces must be oriented so that
in each point of a surface it is possible to tell on which side is solid's interior. The description
contains two parts. a topological description of the connectivity and orientation of vertices,
edges and faces, and a geometric description for embedding these surface elements in space.

Historically the representation evolved from a description of polyhedron.

15

The oldest formalized schema for representing the boundary of polyhedron and its topology ap-
pears to be the winged-edge representation. In it, each face is bounded by a set of digoint edges,
one cycle as faces outside boundary and other bounding holes in the face. Each vertex is adja-
cent to a circularly ordered set of edges. For each edge, incident vertices, left and right adjacent
face, preceding and succeeding edge for clockwise- and counter clockwise order is stored
(Figure 6). This enables traversing edges of a face in clockwise and counter clockwise order.
Order of the edges is used for calculating which side of afaceis outside and which sideisinside

of the solid.

ccw - preceding ccw - succeeding
\\ left face /
u > i \'
/ right face \
cw - preceding cw - succeeding

Figure 6: Winged-Edgerepresentation of edge from vertex u to vertex v. Therepresen-

tation stores preceding and succeeding edge in clockwise and counter clockwise order.

Geometric information in B-rep may contain coordinates of vertices and plane equations of
faces: there are multiple representations that store information differently. Each face must be
defined so that its normal points out from the solid. Geometric information may also contain
equation of edges or those can be calculated from intersection of faces. Typical face defining

representations are Bezier surfaces and rational B-splines.

2.4.2. Parametric Modelling

Parametric modelling is used when several similar shapes are needed. It saves time when only
one geometric shape with parameterization needs to be constructed instead of multiple geomet-
ric shapes. According to Anderl & Mendgen (1995), parametric design can be used in several

different cases:

Modelling variants of parts and assemblies is a method for creating geometric and topological
variants of a model. The shape of a part is modelled as a combination of features that are
described by geometric parameters for its shape, position and orientation with respect to other
features of the part. This way the parameters form a network and modifying a value of a pa-

rameter changes shapes of features of a part creating a new variation of the original part.

16

Modelling the history of features is a way to create topological variants of original geometry.
Variants are formed by changing the number of features according to parameters. For example,
ahole in a part may be removed if the part is small, but the same part may contain several holes

whenitislarge.

Modelling of catalog parts is somewhat different from previous cases but can be achieved by
those techniques. Catalog parts are modelled as geometric and/or topological variants where
only predefined sets of dimensions are applicable. Usually catalog parts are used in engineering
specifications, where for example a screw may have only certain set of sizes and its length de-

pendsonitssize.

Geometric parameters of afeature with respect to other features are usually achieved by describ-
ing geometric relationships of shapes, e.g. parallelism. When a constraint is added to a geomet-
ric model, it is enforced by modelling application. Whenever user changes something in the
model, the application tries to calculate properties of geometry according to all constraintsin the

model. These geometric relationships are called parametric congtraints.

Parametric constraints can be applied in two ways: either the user explicitly defines constraints
(constructive approach) or they are applied automatically (using a rule base). In the constructive
approach, the user has to explicitly specify the usage of constraints, for instance “draw line par-
ald to’. In the automatic approach, rules of sketching system are detecting designer’s inten-
tions. To ease the modelling effort, most systems can use both techniques, using first automatic

detection and then letting the user to modify and add new constraints to the mode.

Anderl & Mendgen (1995) presented several rulesto detect constraints in sketching system:

1. Lines that are sketched approximately horizontal or vertical are considered to be in-
tended as exactly horizontal or vertical

2. Linesthat are sketched approximatdy parallel or perpendicular are considered to be in-
tended as exactly parallel or perpendicular.

3. Elements that are sketched approximatey tangent to arcs or circles are considered to be
intended as exactly tangent to these arcs or circles.

4. Elementsthat are sketched approximatdy symmetrical about a centreline are considered
to be intended as exactly symmetrical about this centreline.

5. Elements that are sketched approximatey collinear are considered to be intended as ex-

actly collinear.

17

6. Pointsthat are sketched approximately lying on the other e ements are considered to be
intended as exactly lying on these elements.

7. Centre points that are sketched approximately lying on the same vertical or horizontal
are considered to be intended as exactly lying on the same vertical or horizontal.

8. Elements of unknown length are assigned a length equal to that of a known element in
the sketch of approximatdy the same length.

9. Arc and circles sketched approximately with the same diameter or radius are assigned
exactly the same diameter or radius.

10. If a feature has the classification shaft and material strength R and torque T are as-
signed, then the dimensioning rule for the diameter D=f(R, T) must be applied.

Theserules are just an example of a set of rules that can be used for interpreting the intentions
of a designer. In practice if the sketch is not close to the intended shape, the rules will fail. Ei-
ther the assumed constraints are not applied or constraints that designer does not want to apply
are added. In these cases he is forced to reapply the constraints in a different way in order to
achieve the intended result (Hoffmann 1994). The solution of Anderl & Mendgen (1995) to this
was to allow designer to adjust sensitivity of sketcher. This can be problematic too, since if sen-
sitivity is set to too strict, the sketch must be very close to intended shape or constraint detection
will fail. On the other hand, setting sensitivity too relaxed may cause the system to detect too
many unintended constraints. Other way to look at geometric rules (in the above example rules
1-7)isthat all arerelated to the snapping feature used in interaction systems. The differenceis
that instead of applying constraint rule automatically, explicit user confirmation may be re-
quested (Zeleznik et al. 1993).

Another thing that contributes to constraint detection is the number of objects in a sketch. If the
sketch is large, it is practically inevitable that some of the rules apply to the currently sketched
feature. Several solutions have been proposed. One solution is to use pixel distance: constraint
rules are only checked against other objects that are n pixels way from current object. This of
course means that constraint detection would depend on current display settings and zooming
factor (Anderl & Mendgen 1995).

2.4.3. Initial Graphics Exchange Specification

IGES is the first standard used for transferring both 2D- and 3D-CAD models between CAD
software. It started in 1979, when mechanical CAD systems were less than 10 years old and
only few products had significant market penetration. Even then users were disappointed of the

fact that it was not possible to transfer CAD models from software to another (Kemmerer 2001).

18

IGES provides mechanisms to store geometry, graphical data and annotations. It establishes
structures for digital representation and communication of product definition data focusing on
essential engineering characters of physical objects such as manufactured products. IGES is
supported by all major CAD systems even today, when STEP has been released and has gained

popularity among CAD software providers.

First version of IGES was released 1980 and the last released version is 5.3 from 1996. Accord-
ing to the IGES 5.x Preservation Society (2007), the standard is now discontinued.

2.4.4. Standard for the Exchange of Product Model Data (1SO 10303)

Similarly to IGES, the function of STEP is to provide a neutral data exchange format between
applications. But instead of focusing just graphics, STEP is aimed to transfer all product related
data (Pratt 2001). The STEP Application Handbook says: “ The overall objective of STEP is to
provide a mechanism that describes a complete and unambiguous product definition throughout

thelife cycle of a product, independent of any computer system.”

In the STEP standard, the application interface contains two layers: the application domain
layer, which is called Application Resource Model (ARM), and the general layer, which is
called the STEP Integrated Resources model. A STEP compliant intermediate file or database
must be compliant with the Integrated Resources model so that data exchange is domain inde-
pendent. Application Protocol (AP) specifications contain both domain specific part of the
STEP standard and mapping of the domain specific data to the ARM mode (Braunschweig and
Gani 2002). The current list of Integrated Resources include, for example a representation for B-
rep based geometries, materials, and mathematics. Application Protocols include standards for
automotive industry, ship building, and the process industry. The list of these specifications is
not final: New parts are under development and will be added in the future (Pratt 2001).

The most widely used part of STEP is the application protocol 203 (Configuration controlled
3D designs of mechanical parts and assemblies). It is used for exchanging of product shape
models, assembly structure, and configuration control information, and it can be seen as re-
placement of IGES. AP203 contains a lot of features that IGES lacks (Pratt 2001).

19

2.5. DataVisualization

Visualization is a critical part of simulation. It helps us to understand a model’ s behaviour and
decreases mode building-, verification-, and validation time. The power of visualization comes
from the capability of humansto process visual information quickly. It provides a natural way to
transfer a lot of information between computer and its user. The ssimulation of manufacturing
plants benefits from visualization techniques greatly, because the models tend to be complex
and counter-intuitive (Rohrer 2000). We focus on parts of data visualization that arereevant to

our topic: visualizing equipment’s behaviour, dynamics of piping, and large CAD models.

25.1. Animation techniques

The impression of movement in animations is created with still pictures. Small changes between
each picture and rapid change from picture to another create an illusion of moving objects. A
basic technique in computer animation is keyframe animation. Its principle is that the user de-
fines keyframes and computer calculates in-between frames by interpolating between them. A
keyframe is defined by its particular moment in the animation timeline and by all the parameters
associated with it. Since the keyframe technique is flexible, practically anything can be ani-
mated with it, ranging from position of geometric models to surface parameters (Kerlow 2004
chapter 11, Parent 2002 section 3.5).

N
>

ts tz ts t

Figure 7: Interpolators are used with keyframe animations. Timeisin horizon-
tal axisand value in vertical axistellsinterpolation value for particular time.

Interpolators are simple but powerful way to express and control between keyframes and how
attributes change. A common representation of interpolatorsis 2D graphs, wheretimeisin hori-
zontal axis and interpolator value in vertical axis (Figure 7). The slope represents the speed of
change; path with steep angle changes interpolated value rapidly, whileflat path keepsthe value

constant. Normal workflow with keyframe based animations is that a user modifies animated

20

model and the animation software automatically generates interpolators. After the animation is

done, the user can finetuneit by editing interpolatorsin 2D graph representation.

Typical interpolation techniques are linear and curved interpolation. Linear interpolation is the
simplest mathematically, but creating smooth, natural movements with it is hard, because speed
of change changes instantly on keyframes. Curved interpolators are more sophisticated than lin-
ear interpolation. They use multiple keyframes for interpolating and depending on their imple-
mentation, give adjustable control parameters for each keyframe. They also avoid the disconti-
nuity problem of the linear interpolation. Typically different interpolators are used with differ-
ent cases, while 1D interpolators can be used for interpolating almost anything, but there are
also cases where they will not suffice. For example, when interpolating 3D orientation, Slerp

(Spherical Linear Interpolation) can produce better results (Kerlow 2004 chapter 11).

2.5.2. Flow visuaization

Glyphs have proven useful in depicting spatially complex, multivariate data, because their
graphical properties, such as colour and size, can be bound to visualized data. They can be seen
iin weather forecasts in TV, where arrows indicate wind direction, and their colour wind tem-
perature. The power of glyphsisthat they are intuitive and can present alarge amount of spatial
information in a compact form. One of problems with glyphs, like arrows, is that in 3D their
direction is ambiguous and their proper positioning is difficult (Rosenblum et al. 1994, chapters
7.4, 23, 26).

Ancther technique to visualize flows is particle animation. While probably being most realistic
visualization of flow, since flow velocity can directly be mapped to particle velocity, it requires
constant updates of positions of particles, which can be computationally demanding (Rosenblum
et al. 1994, chapter 23; Hansen & Johnson 2005, section 12.6).

There are other methods, such as streamlines, streak lines, path lines, time lines, stream ribbons
and stream surfaces, to visualize 2D and 3D flows (Hansen & Johnson 2005, section 12.6), but
they are not usable in visualizing the flows in pipes that are essentially multiple 1D flows in 3D

space.

2.5.3. Visualization of large, complex 3D models

Several variables affect rendering speed. One of them is amount of triangles that computer has
to render. Generally, with fewer triangles to render the rendering gets faster. CAD models of

21

large industrial plants contain millions of triangles. In order to visualize them in real-time, spe-
cial techniques must be applied to reduce amount of triangles rendered each frame. Visibility
culling can prevent rendering of non-visible objects, and geometric simplification can reduce

the amount of triangles used for rendering visible objects.

In 3D graphics, scene is rendered from a certain viewpoint. Typically the rendering can be per-
spective projection or parallel projection of the 3D sceneto a 2D display device. When perspec-
tive projection is used, a view forms a frustum in 3D space, which contains all visible geometry
that is rendered to final image. In parallel projection the frustum is rectangular. An example of a
view frustum is in Figure 8, where there are four objects in the scene. One of the objects is out
of the view frustum. In the same figure grey ball is behind blue box and therefore it is not visi-
ble. Grey ball is then occluded by the blue box.

Figure 8: View frustum: The grey triangleisnot drawn because it isout of view

frustum. The grey ball is not drawn because it is occluded by the blue box.

View frustum culling rejects objects that are not inside the view frustum from rendering. Typi-
cal methods use bounding boxes, or spheres, and test them against view frustum. This technique
isvery simple, and it does not prevent rendering of objects that are behind other objects, and so
do not contribute to final image. Algorithms which do that are called occlusion culling algo-
rithms. Two types of algorithms are used: from-point and from-region algorithms. From-region
algorithms typically calculate potentially visible set (PVS) as a pre-processing step, and useit in
rendering time. For general scenes, PV Ss are hard to compute and trade fast rendering time cal-
culation for larger space requirements and more inefficient occlusion culling. From-point algo-
rithms are run-time algorithms that compute potentially visible set at rendering time. Recent
advancements in graphics hardware have made from-point based algorithms feasible. Bittner et
al. describe an agorithm, coherent hierarchical culling, which uses hardware occlusion queries
to perform visibility tests in a hardware friendly way by exploiting temporal coherence (Bittner
et a. 2004).

22

Reducing complexity rendered geometry reduces the amount of time spend on rendering. There
exists several different algorithms that may have special requirementsfor visualized data, and so
can be used in limited cases. For instance many agorithms require pre-processing of the data,
and can be used only with static data.

Polygon reduction algorithms can be divided by how they compose the whole scene into one
hierarchy, and how they process it. The typical classification is Discrete Level of Detail (LOD),
Continuous LOD, View dependent LOD, and Hierarchical LOD. Discrete LOD is the simplest
hierarchy: each object contains several representations of its geometry, each with smaller geo-
metric complexity. Continuous LOD is similar, but it contains so many different representations
of the original object, that it can be said to be continuous. View dependent LOD is more com-
plex, but allows detail adjustments for parts of the model individually depending on viewing
distance and direction. Hierarchical LOD can combine whole scene into a tree structure, and
therefore it can do level of detail selection for multiple objects at the same time. Plain discrete
and continuous LOD techniques must test each object individually. (Hansen & Johnson 2005,
section 8.4)

Geometric simplification of a model can be approached different ways. The simplest method
that can be used with discrete LOD is that geometry is modelled with several different detail
levels and it becomes a problem of content production. This gives absolute control of quality of
all detail levels but burdens the modelling process. With continuous LOD and view dependent
LOD, the representation must be calculated at runtime. Common geometric simplification of
meshes are based on edge collapsing, vertex removal, or other similar techniques that change
geometry of a mesh removing parts from it based on some error metrics, e.g. curvature, distance
between vertices, and so on. The same approaches can be used with the discrete approach, but
instead of calculating representation runtime, detail levels are calculated and stored as an pre-
processing step. Another approach to simplification is to use image-based representations and
impostors. They differ from previously described methods in that they do not create different
resolution representations of the geometry, but capture the original representation to an image.
Common image-based representations include point primitives, flat images (impostors), tex-

tured depth meshes and depth images.

All of these methods have something in common: selection of detail of the rendered geometry.
Leve of detail can be quality driven or performance driven. The principle of quality driven level
of detail selection is that it guarantees quality of rendered result: The detail selection can be
based on geometric pixel error estimates, preservation of silhouettes and preservation of texture

maps. With performance driven selection, level of detail depends on frame rate estimates or pa-

23

rameters directly dependent on it, for instance, the amount of rendered triangles is kept constant.
Thereforeiit tries to keep the frame rate of rendering constant, rendering with a quality that sys-
tem is capable of handling. Performance driven management can be handled as reactive algo-
rithm where selected rendering quality is based on time spent rendering the last frame. Thisisa
setback in the approach since the information used is old, and the selected quality may not be
correct for the next frame. The reactive approach is different, since it tries to predict the render-
ing quality which is needed to meet time requirements. The predictive model is more complex,

because it needs knowledge of used hardware, but as a result gives more stable framerates.

2.5.4. Visualizing manufacturing simulation with animation

Quick, Zhu, Wang, Song and Miiller-Wittig (2004) combined discrete simulation systems with
animated scenes in virtual environments. Their system included a library, which contained re-
usable models and animation methods. The system supported automatic generation of virtual
environments from process definition data. In most cases the data is not available, and the user
has to manually compose the virtual model. The user is aso responsible for binding animation

properties to simulation properties.

Animations were driven by event based architecture: changes in simulation model launched
events. Discrete events have their problems: when the animation system receives an event, the
visualized mode should be in a state that represents the simulation state. This does not give
time for the animation system to react to state changes. For instance, animating the position of
an object by interpolation is not possible. When the simulation was run before visualization, this
was solved by look-ahead. In cases when simulation is running at the same time as visualiza-
tion, look-ahead is not possible. The solution was to predict the next state of simulation, and to

show the user that animation as aresult of prediction, instead of assured information.

2.6. Ontology based programming and modelling

In modern world, in current information society, communication is a key issue. Organizations,
people, and software systems must communicate with each other. Without proper communica-
tion they cannot co-operate, and bad communication leads to misunderstandings and informa-
tion loss. Because of background and needs of those entities, there are many viewpoints and
assumptions regarding what is essentially the same subject of matter. Each uses his own vo-
cabulary and therefore same terms may have different meanings and different terms may have
the same meaning. With software systems, this problem was initially solved case-by-case, crest-

ing communication and data transfer between two applications. Gradually it was noticed that

24

using ontologies, a shared taxonomy defining concepts and terminology used in communication,

provides advantages over case-by-case conversions (Uschold and Gruninger 1996; Smith 2003).

Term "ontology"” has several different meanings. The first confusion comes from the fact that
the term "ontology" has different meaning in various contexts. In philosophy it is defined as
“the science of being”, started with Aristotle' s work, and its original meaning of the word can
derived from Greek: “ontos’ means being, and “logos” meaning both language and reason. In
the 19th century, at the beginning of modern philosophy, German philosophers defined ontol-

ogy as systematic account of existence (Roche 2003).

When the word is used in the context of knowledge engineering, meaning is also ambiguous.
Probably the most commonly referred definition for ontology was made by Thomas Gruber
(1993): “An ontology is an explicit specification of a conceptualization”, but as Guarino and
Giaretta (1995) pointed out, there are many other definitions, and here exact meaning cannot be
made without knowing what “specification” and “conceptualization” mean. After discussion,
they decided that the Gruber’s definition for ontology should be “a logical theory which gives
an explicit, partial account of conceptualization”, where “conceptualization” means “an inten-
sional semantic structure that encodes the implicit rules constraining the structure of a piece of
reality”. This definition contains two keywords that make all the difference: partial and inten-
sional. Conceptualization is partial, because then the degree and the detail of a specification may
change, depending on where, how and why the ontology has been defined and used. The con-
ceptualization itself is intensional semantic structure since the focus is in the meaning of things
and extensional structure would make the ontology dependent of state of affairs. For example,
with ontology of a table and boxes on the table, intensional definition does not take account or-
der of the boxes, but with extensional definition different orderings of the boxes would be dif-
ferent conceptualizations. In practice, the meaning of the term "ontology" can be stated as

shared understanding of some domain of interest (Ushchold and Gruninger 1996).

Ontologies are used in several contexts and for several purposes. Gruber (1995) used ontologies
for information sharing. Uschold and Gruninger (1996) used them for communication, inter-
operability and systems engineering. Uschold and Callahan (2004) listed neutral authoring, on-
tologies as specification, common access to information, and ontol ogy-based search. According
to Guarino (1998), ontologies can be used as database components, user interface components,
and application program components, either development time or run-time. Ontologies have
become popular several scientific areas including Artificial Intelligence, Computational Lin-

guistics, and Database Theory (Guarino 1998). The purpose of an ontology’s existence also

25

drives how it should be designed, what it should contain, and how it should represent its infor-

mation.

In the next tree sections we look at how ontologies can be used. Section 2.6.4 shows how on-
tologies can represent information, and the ontologies can be classified by their use. Section
2.6.5 presents some design guides and criteria about ontology design. Sections 2.6.6 and 2.6.7
briefly introduce W3C'’s standards for semantic web and what kind of concepts they offer for

creating ontol ogies.

2.6.1. Communication

Ontologies can be used for communication in several ways. To create shared understanding,
unified concepts and terms among those who must communicate with each other can be brought
together and form an ontology for normative model. To form a normative model, one must
identify all shared ideas and concepts, find exact matches and all important relationships. Using
the normative model allows semantic transformation between contexts and provides possibility

to use the same algorithms and problem solving techniquesin all contexts.

In the same way, ontologies can be used for forming networks of rdationship. In cases where
using a normative model would create too strict restrictions to different contexts, other
mechanisms like agents and rules can be used for creating relationships between different con-

texts and allow communication between different contexts.

Ancther important goal of an ontology in respect of communication is to provide unambiguous
definitions for terms used in a software system. All used software tools should be capable of
supporting those terms by maintaining consistency of the system. User’s and tool’ s ontologies
are usually different and in such cases there must be components that can map those ontologies

to each other.

Ontologies can also be used for integrating different user perspectives. This useistightly related
to the previous uses for communication; for each user perspective there exists one ore more on-
tologies including concepts and terms for that particular user perspective. It allows each user
can use vocabulary that he is accustomed to use for the same information. For example, a plant
designer’ s perspective to a process plant is very different to a maintenance worker’ s perspective
to the same plant, but it is critical that when concepts overlap, both perspectives use the same
data.

26

2.6.2. Inter-Operability

In large software systems there is a need for exchanging data between users and tools. Ontolo-
gies can be used as a Inter-Lingua that supports translations between different languages and
presentations requiring only creating translators between a native ontology and interchange on-
tology instead of creating trandator for each native ontology pair (Figure 9) (Uschold and Grun-
inger 1996).

Native Native Native Native
ontology ontology ontology ontology

ontology as
Inter-Lingua

Native Native Native Native
ontology ontology ontology ontology

Figure 9: Ontology as | nter-Lingua compar ed to trandations done for
each pair. Using ontology as I nter-Lingua reduces amount of translations.

To ensure inter-operability, an interchange ontology must support all the features in native on-
tologies, and because of that it would be beneficial to use a global standard as an interchange
ontology. Even then information loss may not be avoided, because native ontologies may not
support the same features, and then al the information that the target ontology does not support
will belost (Uschold & Callahan 2004).

Inter-operability can exist in different dimensions. These dimensions according to Uschold &
Gruninger are:
Internal inter-operability is used with systems that are under direct control of the same
organizational unit and it has old ontologies because of historical reasons or other leg-
acy systems that cannot be changed.
External inter-operability is used when an organizational unit needs to insulate itself
from outside changes.
Integrated ontologies among domains means integration of ontologies of different do-
mains, usually for support some task. For example, an ontology for support simulation
model creation will need to integrate ontologies for simulation and diagramming or an
other user interface ontology.
Integrating ontologies among tools is integrating different ontologies under the same

domain, because of legacy systems that must be ableto shareinformation. Thisis a dif-

27

ficult case for ontologies since applications and their concepts already exist and cannot

be changed.

2.6.3. Systems Engineering

Both communication and inter-operability sections dealt with ontologies that are used inside
software systems. In systems engineering, ontologies are used for supporting development of

software systems.

A shared understanding of the problem assists in specifications of a software system. When an
informal approach is used for creating specifications, ontologies make identifying requirements,
finding and understanding relationships among components of the system easier. In a formal
approach, an ontology provides a declarative specification of a software system and allows to

reason the purpose of the system.

Informal ontologies can improve reliability of software systems when they are used for manual
checking the design against system’s specifications. Formal ontologies can be used for auto-
matic or semi-automatic consistency checking of a software system against its specifications.
They can also be used for helping integration of software components because semantic con-

straints and rel ationships between different tools can be interpreted.

Ontologies can be used as shared libraries for modelling problems and domains. In order to do
that, ontologies should be designed to be reusable and extendible. Problems will arise if an on-
tology is designed for a certain domain but is applied to another domain where assumptions are
not the same. The result is that the application will not behave as expected. In these cases, order

to increase reuse, ontologies must be analysed, so that reusable concepts can be found.

2.6.4. Information represented by ontologies

Ontologies can describe information on different levels. Roche (2003) listed four types of
knowledge, and examples of them arein Figure 10.
A meta-ontology, or representation ontology, specifies the knowledge representation
principles used for defining concepts of domain and generic ontologies e.g. what is a
class, arelation, and a function. Examples of meta-ontologies are OWL (Section 2.6.7)
and LayerO of ProConf (section 3.1).
A generic ontology, also called top ontology, specifies general concepts, defined inde-
pendently of a domain of application, which can be used in different application do-

28

mains. Time, space, mathematics are examples of general concepts. Because of inde-
pendence of a domain, these ontologies can be reused (Guarino 1998)

A domain ontology is dedicated to a particular domain and can be used and reused for
particular tasks in the domain. Chemical, medicine, and enterprise modelling are do-
main ontologies. Guarino (1998) also listed task ontology to the same information level.
It describes generic tasks and activities like diagnosing and selling.

An application ontology gathers knowledge dedicated to a particular task including

more specialized knowledge of the experts for the application. In general it is not reus-

able.
Type of ontology Example Ontology Example Concepts
Meta-Ontology Layer0 Type, Relation 5 @
Generic Ontology Mathematics Vector, Equation E :é:
Domain Ontology 3D Graphics Shape, Appearance § §_
Application Ontology 3D Industrial plant modelling Tank, Control Point » 8

Figure 10: Different types of ontologies, example ontologies and their concepts. Specialization in-
creases from top to down and ontologies are dependent of their predecessors. In the example 3D
Industrial plant modelling could be also domain ontology if it does not specify application specific
concepts, like here the contral point.

Depending where and what for ontology is used, also its formality may be different. Uschold &
Gruninger (1996) explained four categories: highly informal, semi-informal, semi-formal and
rigorously formal, where first one is expressed loosely in natural language and last one is: me-
ticulously defined terms with formal semantics, theorems and proofs of such properties as

soundness and compl eteness.

2.6.5. Design process, criteria and evaluation.

Ontology development starts by identifying purpose and scope of ontology. The purpose of the
ontology can be derived from where and why it is used. These were listed in three previous sec-

tions. Also identifying possible users of the ontology is beneficial.

The next step is building the ontology. This includes two phases: capturing the ontology and
coding the ontology. When the ontology is captured, key concepts and relationships in the do-
main of interest must be identified. Then unambiguous names and definitions for the concepts

and the relationships must be found. After that, we have formed a conceptualization. Explicit

29

representation of the conceptualization is formed in the coding phase. The representation is de-
signed and created on top of chosen meta-ontology, using its ontology modelling concepts and
relationships. Integration of existing ontologies must be considered in the previous phases.
There is no common rule when the existing ontologies should be integrated and when not.
While reusing ontologies improves inter-operability, same effect can be achieved by mapping

the designed ontol ogy’ s concepts to the existing ontologies (Uschold and Gruninger 1996).

The third step in the ontology development is evaluation and the last step is documentation. In
the evaluation step the developed ontology is reflected to its requirements and specifications,
and so on. Documentation step may not be considered as a separate step at all, but should be
practiced within all the previous steps. A good documentation is essential for re-using the ontol-
ogy and knowledge sharing. Therefore all important assumptions, main concepts, and primitives

used for expressing definitions should be written down.

T.R. Gruber (1995) proposed a preliminary set of design criteria:

Clarity: An ontology should effectively communicate the intended meaning of defined
terms. Definitions should be objective, independent of the context where they are used.
Objective definitions can be specified in formal axioms. Therefore formal axioms
should be used whenever possible. Documentation written in natural language, includ-
ing examples of use will aid people to understand the ontology and reduce misconcep-
tions.

Coherence: An ontology should be coherent, it should sanction inferences that are con-
sistent with the definitions. At least the defining axioms should be logically consistent.
Coherence should also apply to the concepts that are defined informally, also those that
are defined using natural language, including documentation and examples.
Extendibility: An ontology should be designed to anticipate the uses of shared vocabu-
lary. It should offer a conceptual foundation for a range of anticipated tasks, and the
representation should be crafted so that it does not require changing the existing defini-
tions.

Minimal ontological commitment: An ontology should require the minimal ontological
commitment sufficient to support the intended knowledge sharing activities. An ontol-
ogy should make as few claims as possible about the world being modelled, and allow
the parties committed to the ontology freedom to specialize and instantiate the ontol ogy
as needed. The effect of minimising ontological commitment is twofold: many onto-
logical commitments may limit reusability and extensibility, but too few commitments
may cause the ontology to be consistent in cases where it was not intended to be, for ex-

ample allow creating incorrect models that are correct by the ontology.

30

Minimal encoding bias: The conceptualization should be specified at the knowledge
level without depending on a particular symbol-level encoding. This means that the
conceptualization should be designed without taking account of the chosen representa-
tion, because it could influence the design, preventing use of the ontology in different

representation systems.

In order to evaluate designed ontologies, there is a need for objective criteria that are founded
on the purpose of the design. But the problem is that within ontological engineering thereis no
classification of problem domains and no characterization of ontologies to evaluate and compare
their adequacy or performance. On the other hand, theoretical analysis of ontologies can be done

by comparing their axioms to the intended models of designer or user (Gruninger & Lee 2002).

2.6.6. Resource Description Framework

Resource Description Framework (RDF) is W3C's standard for describing resources on the
Web. RDF is built upon XML, but increases semantics of information by specifying standard
modelling primitives like classes and properties. Therefore RDF provides semantic interopera-
bility between documents, while plain XML provides only syntactic interoperability (Decker et
al. 2000).

RDF has several purposes. One of them is to represent metadata about Web resources, such as
title, author, and modification date of a Web page. In more general, its purpose is to provide a
common framework for expressing information, and the information presented in RDF is in-
tended to be processed by machines, not humans. RDF enables an application to exchange in-
formation without loss of meaning, and the information can be used in applications that were

not designed to handle theinformation (Manola and Miller 2004).

The information model in RDF is based on facts. A fact is a statement of a relationship between
two things. Facts are presented in RDF documents with a triple model; one triple encodes sub-
ject, predicate, and object. The predicate in a triple defines relationship between the subject and
the object. The whole information in the document can be seen as a directed graph formed by

thetriples (Figure 11).

. Predicate)
Subject Object

Figure 11: Tripleisformed from subject, predicate, and object.

Whole information of RDF document isformed by thesetriples.

31

For instance, in natural language sentence “ Colour of the car is green.” the car is the subject,
colour the predicate, and green the object. As a basic, a triple describes a property of a thing,
thing being the subject of the triple, and the property being the predicate, and the value of the
property is the object of the triple. From the predicate s viewpoint the subject is domain of the
relation and the object isits range.

RDF is designed to provide a basic object-attribute-value model for information, but it does not
make any data-modelling commitments. Basic relationships used in RDF are: class, property,
subclass and subproperty. Also domain and range restrictions of relations can be described with
RDF.

2.6.7. Web Ontology Language

Web Ontology Language (OWL) is an ontology language built top of RDF, and it is based on
earlier ontology languages, most notable DAML+OIL (DARPA Agent Markup Language; On-
tology Inference Language). Like RDF also OWL is W3C'’s standard. The purpose of OWL is
to “use by applications that need to process the content of information instead of just presenting
information to humans’. It provides better machine interpretability than XML and RDF by pro-
viding richer means to express information, including formal semantics. OWL has three sublan-
guages, OWL Lite, OWL DL (Description Logics), and OWL Full, which increase expressive-
ness of the language but at the same time increase formal complexity making interpretation
harder for reasoning systems. Therefore it is unlikely that there will be reasoning system for all
OWL Full capahilities (McGuiness and van Harmelen 2004).

2.7. Using ontologies with graphics and simulation

In the previous section we discussed about uses for ontologies. This section represents few ex-
amples how ontologies have been used with graphics and simulation, and what benefits they
have provided. This list of examples is small set of research related to the whole graphics and

simulation area, but topics in thelist are close to our subject.

2.7.1. Linking graphics to domain ontologies

Kaloegerakis, Christodoulakis and Moumoutzis (2006) presented an interoperable framework
for integration of virtual reality scenes and semantic information. They used OWL-
representation of a scene-graph, and it enabled creating mappings between graphical objects and
domain specific knowledge. They defined fifteen primitive types of semantic mappings, which

32

could be used for binding classes or individuals of domain ontologies to classes or individuals
of graphics ontology with a certain meaning. For instance, “equivalence’-relation can be used
for describing that every NURBS curve represents a membrane or a polygon mesh represents a
component in a specific shell. Using these reations for mapping graphics ontology to domain
specific ontologies, which may be very different from graphics ontology, is possible because
those relations are domain independent concepts. Hence mappings themselves are independent

of domain ontologies and can be interpreted always in the same way.

Expressing arbitrary mappings using OWL object properties was considered to be impossible.
Solution was to create fifteen OWL classes as an intermediate ontology to describe above map-

ping rdations. And for last type of mappings, they added mathematical equations.

Using ontologies and inference provided several advantages. One of the advantages is creating
new content based on their existing content or their incorporated domain knowledge and cregt-
ing the scene based on the semantic instances of a specific domain. For instance a graphical
model can be created from a representation of a chemical molecule by using rules and inference.
Single atoms of the molecule can be mapped to spheres, and the position of the spheres can be
calculated using rules. Similarly visualization of bonds between atoms can be created based on
both structure of the chemical model and aready generated geometric representation. Also the
same approach can be used for visualization-aided decision making. Inference can be used for
making automatic decisions, for instance, medical diagnosis based on the nature of the materials
used with objects representing organs and tissue. Based on these decisions further visualization

can be done, for instance, in form of animations.

Ancther advantage is querying the scene combining both their content and their domain knowl-
edge. Using queries makes inference possible, for instance, the previous examples are depend-
ing inferences using queries. Critical information can be retrieved using ontological mappings.
Queries like “what is function of that object?’, and “find all shapes and their materials’ are easy

to answer.

Ontologies also allowed personalizing the scenes by formalizing preferences of users about their
content. This allows users to modify scenes so that other users will not see modifications. For
example user may set material of objects that do not have material definition to a specified one,
or scale all objects by two.

33

2.7.2. Linking graphics to simulation concepts

Park (2005) used ontologies to combine dynamic models used in simulation to geometric mod-
els of the phenomena being modelled, calling the methodology as integrative multimodeling. In
multimodelling objects had three different descriptions: one for graphical model, one for dy-
namic model, and one for information model. Both the geometric model and the information
model were used in visualization, while the dynamic model described objects’ behaviour in
simulation. Also the dynamic model had its own geometric representation and user could switch
between visualization of the geometric and the dynamic model. Figure 12 shows a simulation of
three aircrafts visualized in both ways. In the dynamic model visualization, user can also see

connectivity of the models, which is visualized using arrows.

Figure 12: Geometric (left) and Dynamic model of example scene. The geometric model visu-
alizes the actual scene, while the dynamic model visualizes objects behaviour and connec-
tivity (Park 2005).

The user interface of the system, built into Blender (2007), contained component called Ontol-
ogy Explorer that could be used for creating and editing OWL ontologies. The purpose of
ontologies was representing modelled phenomena; defining modelling components and formal-
izing mappings between them. The model components, their graphical representations and dy-
namic behaviours could be stored into component database, and reused in other simulations.
Simulation itself was run in Blender using its game engine. The dynamic behaviour of objects
was written in scripting language, either Python or JavaScript. Also user interface actions for
models were created using concepts of VRML (Virtual Reality Markup Language) in ontologi-
cal format.

2.7.3. Semantics based geometric simplification

Posada, Toro, Wundark and Stork (2005) used ontologies for semantics based simplification of
large industrial plant CAD models. Their aim was to identify the objects in a CAD model and

use that information in geometric simplification to faster visualization. Their system consisted

of several modules (Figure 13).

ISO STEP 10303-227
PIM System Catalog : adaptation module
Reconstruction P
Module)

- Ontology based representation
3D CAD Categorizes Cell of standard parts
System A Egonées ells - Branding of instances according

asedon to the standard
geometric similarity - Parameter matching
Resources
Adaptive representation
Semantic module
User Adaptation Semantic LOD
Module * Geometry simplification
* Symbolic simplification
ISO STEP

Design Review
walkthrough
module

Interaction and
visualization of the
model in real time

Figure 13: Architecture of semantics based geometric simplification. Input of the al-
gorithm is standard CAD model from Plant Information System. Fir st geometries of

the CAD are classified before rendering algorithm can use semantics.

As input their system takes a plant model from a 3D plant modelling software. Usually those
models do not contain semantic information, and Catalog Reconstruction Module searches for
geometric similarity to classify all the objects in the CAD model. Then, with user’s help, these
classifications are mapped to concepts of STEP AP-227 (Plant spatial configuration), which is
modelled as an ontology. This mapping is done in two phases: first the user matches the geo-
metric objects to the concepts in the ontology and then the parameters specified in STEP stan-
dard to the geometric features of 3D objects.

At runtime, three modules control the visualization quality. Three aspects are taken account:
available system resources, the user’s intentions and background, and the model characteristics.
System’s resources part is self explanatory; model can be visualized with higher quality on PC
cluster versus single laptop. Semantic information of the plant model is used with user profiles:
depending on who is using the visualization and for what it is used. Semantic Adaptation mod-
ule controls the visualization quality by increasing or decreasing objects’ quality depending of
those two aspects. For example, a piping engineer doing piping fixation requires different visu-

alization than a manager who is representing the model to customers. In the engineer’s view an

35

elbow is rendered with lower quality than in the manager’s view, but the manager’s view hides
the clamps (Figure 14).

Figure 14: Visualization of a plant, where level of detail selection depends on who is using it. Engi-
neer’s view (left) show the elbow in lesser quality and shows the clamps, while manager’s view
(right) rendersthe elbow with better quality and hidesthe clamps. (Posada et al. 2005).

Adaptive Representation Module performs the actual geometric smplification. It can use pure
geometric simplification algorithms on the original CAD geometry, replace the original geome-
try with a standard parametric part used in STEP AP227, or use a symbalic replacement with
low triangle count. Selection of simplification type depends on context; the symbolic models
can be used only if they are familiar to the user.

As a case study, they used a CAD model of a chemical plant. While the algorithm was not able
to recognize all objectsin the model, semantic reduction reduced amount of triangles about 50%
compared to pure geometric reduction. Most of unclassified geometry of the model was caused
by complex objects like boilers and tanks, and other structures like columns, windows and
square pipes, but these contributed just over one tenth of the whole geometry.

36

3. Requirement analysis

This chapter represents requirements to plant model ling. Requirements are divided into two sec-
tions: functional requirements section analyses the purpose of application and derives demands

for the application. Technical requirements section sets constraints for the implementation.

3.1. Functional requirements

The purpose was to design and implement 3D user interface for 3D process plant modelling,
link that model to a ssmulation model, and last visualize result of the simulation. By analyzing

these purposes, we can derive functional requirements.

Modelling of a plant starts by sdlecting, inserting, and placing equipment. In current plant de-
sign software, the user may select equipment from catalog, or create new equipment and model
their geometries. Both of them are critical features, because equipment of a plant can consist of
multiple similar piece of equipment, for instance, pumps, tanks, and valves that are used for cre-
ating desired process. Similarity here does not mean that equipment would be exactly the same:
their size may change. Sometimes the plant may contain custom equipment that are designed

and built for just that particular plant. Therefore also creating own equipment is necessary.

Ancther step in plant modelling is pipe routing. It includes routing pipe from a piece of equip-
ment to a piece of equipment, and inserting necessary components, which are used for control-
ling flows inside pipes, to pipeline. Since it is awkward for the user to exactly position each
component, automatic updating of pipelines and their components is necessary. Pipelines also
contain components that do not affect the flows, but are required in real world when pipelineis
built. One example is a flange that connects components to each other. These components re-
strict how components can be added or inserted into a pipeling, since they have a certain order
how they can be connected to each other. For instance, a valve is connected to other components
with flanges. A pipeline may also contain other components, like hangers that support weight of
the pipeline. These components are not necessary to a user who is creating a model for process

simulation.

Ancther aspect that contributes requirements of the pipe routing is layouting. Normally pipe
layouting emphasises right angles that help to achieve symmetric design. They contribute to
easier and cheaper construction and maintenance. Therefore pipe routing should support this

type of design.

37

Pipes are connected to equipment with nozzles. Two types of equipment exist: equipment that
have nozzles in predefined places, and equipment that allow custom positioning of nozzles. A
good example of piece of equipment that has nozzles in predefined positions is pump. Input and
output nozzles are always connected into the same position. A tank is an example of piece of
equipment that does not necessarily have nozzles in the same position: depending of the process
and layout, their positions may change. Both of these features are useful, but the free insertion
of nozzles is necessary. With free insertion the user is able to insert nozzles to all equipment,
but free insertion allows doing incorrect design. Supporting both cases would reduce errors and
make plant designing faster, because the user would not have to insert nozzles manually to each

piece of equipment.

Since the main purpose 3D plant modelling is to act as an user interface to process simulation, it
sets certain requirements. The most necessary feature is generating simulation model according
to plant model. Our purpose is not to create our own simulator, but instead use existing ones.
Anticipating what information is required by a simulator is not possible: steady-state and dy-
namic simulators have different needs, and many steady-state simulators cannot use dimensional
information at all. Sometimes real world values will not produce a correct simulation and some
adjustment may be necessary to fine tune the used simulator, and the simulation case. Therefore
it is required that simulators can provide their own user interface components, which can be

used for configuring simulation values.

The most intuitive way to visualize behaviour of equipment is either mimicking their natural
behaviour or to using colour to represent some information about them. For instance, visualizing
tank fill with an animation that changes liquid's height inside the tank is natural to every user
and requires no further explanation. Sometimes this is not enough, for example, while status of a
valve can be visualized by animating the position of its handle, the handle will most likely be
too small to be seen from long distances. Because understanding of the behaviour of the simu-
lated process requires that some part of the process can be seen at the sametime, it may be more
practical to visualize state of the valve by changing its colour. Since the colour of equipment
can visualize multiple different properties, the user must be responsible for binding the anima-
tion to a simulation value. Animations bound to natural features are different, for instance, the

fluid height changing animation can be used only to visualize fluid height.

In the end, what means are used for visualizing simulation depends on the user and his prefer-
ences. One may prefer animations that mimic natural behaviour, and other may prefer changing
colours. Thereforethe user must have ability to sdect the animations that he wants to use. Since

animations may only visualize limited set of simulation data, it is necessary that animations and

38

what they visualize can be changed rapidly. Sometimes it may be possible to animate multiple
features at the same time, for instance, using the same tank example, one could visualize fluid
height with an animation, and use colour changing animation to visualize pressure or tempera-
ture of the tank. Supporting this would allow more information about simulation to be presented
to the user. While it is not necessary, interpretation of behaviour of simulated process would
benefit of it.

Animating just equipment will not bring complete visualization of a process plant: also flows
inside pipes are in critical part. Therefore we need means to visualize flows. Similarly as with
equipment, flows may have multiple properties that the user may want to visualize. The most
common of them is probably mass flow, but other properties, like temperature and pressure are

also important.

While animations and other visualization techniques are great in representing large amount of
information, the user must have ability to see exact numeric values of the smulation. This way
the user can spot interesting places by watching visualizations, and then inspect a single piece of
equipment or a pipeline and get more precise information to form a better picture of behaviour

of the process.

Complete table of the analyzed requirements and their priorities depending of usability of the
requirement is collected to Table 1. It is divided to six groups: modelling, animation, equipment

layouting, pipe routing, simulation, and visualization.

3.2. Technical requirements

The used software architecture for the implementation is Simantics Platform. ProConf, the user
application of Simantics platform, is Eclipse based. It sets certain restrictions of what libraries
can be used in implementation. They must be either pure Java libraries, or libraries with INI-

interfaces.

Simantics platform is released with open source licence, but it allows commercial application
created with it, without releasing them with open source license. Since our aim is to design and
implement generic user interface for process simulation, GPL type of licences must be avoided,

because their use would restrict commercial usage.

39

Table 1: Functional requirements

ID Requirement Priority
M1 Geometric models of equipment must bereusable High
M2 Geometric models should contain sizing parameters High
M3 Geometric models of equipment must be animatable High
M4 Geometric models of equipment should be easy to create High
M5 One geometric model must be able to have multiple animations High
Al Transformation and size of equipment, or its feature must be animatable High
A2 Colour of equipment must be animatable High

E1 Inserting new equipment into a plant High

E2 Changing rotation and translation of equipment High

E3 Modifying sizing properties of equipment High

E4 Adding and removing nozzles High

E5 Placing equipment relative to each other Medium
E6 Using custom coordinate systems to place equipment and nozzles Low

P1 Routing pipe from a nozzleto another nozzle High

P2 Inserting inline components to pipe High

P3 Modifying routed pipe High

P4 Modifying inline components High

P5 Creating branches High

P6 Structure of pipeline should be kept correct automatically High

P7 Piperouting should reflect real world situations Medium
P8 Logical order of components Low

S1 Simulation model must be created from graphical model High

S2 Simulators must be able to provide Ul components High
V1 Seecting animations for equipment type and single equipment High
V2 Visualizing dynamics of flows High
V3 Natural linking of animation and simulation property Medium
V4 Selecting more than one animation per object that is used at the sametime Medium
V5 User must have mean to see exact numeric information of simulation High

40

4. Implementation platform

Simantics is ontology based modelling and simulation platform developed (and is still under
development) by Semantics Models research team at VTT. One of the key concepts of Siman-
tics platform is separation of modelling data, simulation algorithms, and real-time data access.
With this separation, the platform is capable of supporting multiple different models and multi-
ple different simulation algorithms, with their own data structures, at the same time. To support
different modelling needs, Simantics platform uses semantic graph: all the information is stored
with triples. Theidea is similar to RDF and actually saving and loading of ontologies and mod-
elsisdone in RDF format.

Simantics platform is multi-user modelling environment, hence it consist of two components:
client application and server. Server, called ProCore, is decentralized, versioning triple storage,
where al client applications are connected. Client application, called ProConf, is built on top of
Eclipse RCP (Rich Client Platform).

For simulators, platform provides Extension mechanism. Extensions are client applications to
ProCore, similarly as ProConf, but they are not tied to Eclipse and do not contain user interface.
The most common use for the extension mechanism is simulators; extensions are registered to
ProCore and it is able to launch them when needed. Simulation data transfer between exten-
sions, ProCore, and ProConf is done with Value Sets, real-time data access interface of Siman-
tics platform. Value Sets are separated from triple database, and therefore are capable of trans-
ferring much larger amount of data. The basic operation of Simantics platform goes as follows:
first the user creates mode with ProConf based editors, and starts the simulation. ProCore
launches the extension of simulator, which initializes its calculation structures from information
in triple database, and starts the simulation. Simulation values are transferred back to ProConf
with Value Sets, and ProConf based editors can visualize the simulation.

Architecture wise, ProConf contains three components that are used for accessing triple storage
on server: UndoCore, Graph and Local ProCore component (Figure 15). Local ProCore compo-
nent is lowest level component of the client application, using SOAP (Simple Object Access
Protocol) to connect the server and provides native interface for extensions. UndoCore acts as
local triple storage for client application, caching all triples that client is using. It also provides
undo features for user interface components. Graphs are components that are used for trans-
forming triple-based data access to more user (programmer) friendly resource-based data access.

All user interface components are accessing the database using graph components. These graphs

41

contain their own caches, and whenever something is changed in one of the graphs, changes are

updated to other graphs via event based mechanism.

To further decrease programming effort, ProConf contains Java code generator, which is ableto
generate Java stubs for handling ontologies. Since ProConf supports multiple inheritance, multi
instantiation (instance is instance of multiple classes), Java's instanceof checks cannot be used

with stubs. Therefore ProConf provides its own methods to do the samething.

Editor 1 Editor 2
| |
| |
| |
Graph Graph
Java | |
| |
__________ mmmmm o
I
|
|
Local
UndoCore
|
I
JNI !
|
|
| ——
| r
: : Extension 1
I %
|
Local ProCore £---|
|
: Extension 2
Gt I
|
Network interface :
|
|
|
I
Remote
ProCore

Figure 15: Architecture of Simantics platform.

41. LayerO

Layer0 is the base ontology of the system and all other ontologies that are added to the system
are created using its concepts. It defines many basic concepts, like relations and properties as

OWL, but it has several features that add support for separation of model configuration data and

42

real-time (simulation) data. When ProConf was initially designed, using OWL was considered,
but using OWL’s DL-level that most of the available tools support, does not support all neces-
sary features to describe all use-cases, like product-function-individual relationships and class-
of-class concept. Class-of-class concept describes mechanism, how an instance of a class can be
used as a class and further instantiated. This is used for expressing products where product is a
class, and manufacturer’s certain product is an instance of that class. That instance is then used
as a class and instantiated into an individual piece of equipment. For example pump is product

type, Sulzer Ahlstar A Seriesis a product, and a pump installed to a plant is an individual.

Ancther thing is that OWL rdies on inference in various cases, for example when checking if an
individual is an instance of a class. In the system, which purpose is to handle large amounts of
data, using inference for too many things was considered to be too slow. Therefore decision was

made to create own base-level ontology.

Basic concepts of LayerO are types, instances, relations and properties. Types are similar as
classes in object oriented programming languages: they define what relations and properties
instances of a type may and must have. Relations are used for describing relationship of two

resources. A relation can restrict its domain and range; where it starts and where it ends.

LayerO has two basic relations that are used for modelling types and instances: instanceOf that
describes instantiation of type, and inherits that describes inheritance of types. With inheritance,
restrictions of atype are transferred to the inherited type, if the inherited type does not override
them. For example, in Figure 16 Vista Symbol defines that its instances may have connection
proxies because it is inherited from Symbol, but Vista Symbol Type overrides restriction of
Symbol Type and its instances must have one, and only one child, while instances of Symbol

Type may have zero or more children.

A resource must always be an instance of some type. This also appliesto Type that is the lowest
type in LayerQ: it is an instance of itsdf. With instantiation type' s restrictions are forced to in-
stance. In Figure 16 Symbol may have children because Symbal type defines such regtriction,
but Vista Symbol must have one child. A resourceisatypeif it is instance of aresourcethat is
inherited from Type or if it is an instance of Type. In figure Symbol is a type because it is an
instance of Symbol Typethat isinherited from Type, and Vista Symbol is a type becauseit is an
instance of Vista Symbol type that is inherited from Type.

43

instanceOf

0..1 Has Range
1 Has Name

0..1 Has Domain

Relation Type

instance Of

inherits

instanceOf

instanceOf
Symbol Type * Has Child @

inherits instanceOf * Has Connection Point
Proxy

inherits
Vista Symbol Type
instance Of @

%

inherits

1 Has Child

instanceOf

Kosher Symbol

Figure 16: Basic concepts of Layer 0 and example of their usage.

A resource is arelation type if it is an instance of Relation Type. Relations can be used in two
ways: either as singleton relations or as relations instances. Relation instances may have their
own properties. Singleton relations are similar to relations (properties) in OWL, and they only
describe semantics of a relationship without giving any properties to the relationship itsdf. In
Figure 17 Library Consist Of isardation type and :Library Consist Of is its singleton instance.

instanceOf

instanceOf inherits instanceOf inherits
singlelnstance
0..1 Has Range

Relation Type Library Consist Of : Library Consist Of

instanceO
Figure 17: Relation concepts: Library Consist Of is a relation type and :Library Consist of is its

instanceOf

singleton instance.

Properties can be divided into two cases. structural properties and literal properties. Structural
properties are similar to normal types, the difference is only conceptual: they are used for de-
scribing data related to the actual types. Literal properties are for storing primitive data: Strings,
doubles, integers, and boolean values. Properties can be flagged as stateful or stateless. Stateful
properties are used for real-time data access with simulators, and are not stored to graph. State-
less properties are stored into graph and therefore versioning of them is supported, which is not

the case with the stateful properties.

Enumerations are used for describing restricted set of types that may exist. For instance, in
Figure 18 Line Join may be only Bevel, Round, or Miter, nothing else. Enumerations are formed
by instantiating Enumeration and adding all items to instantiated Enumeration with instanceOf -

and onOf-rdlations.

instanceOf

e | e

inherits

instanceOf

oneOf
instanceOf

instanceOf oneOf instanceOf

instanceOf

CORNCORRCS

Figure 18: Enumer ations: Line Join isan enumer ation that iseither Bevel, Round, or Miter.

4.2. User Application

ProConf uses Eclipse development platform (Eclipse, 2007) as its basis for user interface.
Eclipse itsdf is Java-based application, using its own toolkit for user interface (SWT, Standard
Widget Toolkit). SWT is wrapper for native user interface components, which allows it to look

similar to native applications.

Eclipse itsdf is plug-in based; core components contain only OSGi-based plug-in managers,
which are capable of loading and unloading plug-ins when needed (McAffer and Lemieux,
2006, chapter 2). Whole Eclipse-based application is just a set of plug-ins, which use each
other’ s services to provide functionality that user needs. Plug-ins can use services of other plug-
ins two ways:. either extending other plug-in and its classes, or adding new functionality to exist-
ing plug-in using Extension / Extension Point mechanism. Only way the first method differs

from traditional object oriented programming is that plug-ins may restrict what classes are visi-

45

ble outside of the plug-in and if a class is not visible to other plug-ins, it cannot be extended.
Latter way is somewhat more complicated process, but is heavily used throughout whole
Eclipse, and it is beneficial to ProConf too. When plug-in defines an Extension Point, it defines
an interface that other plug-ins can use for adding services by creating Extensions. The interface
can be used for transferring data, like images, but the most common way is to describe a Java-
interface, or multiple of them, which plug-in that creates Extension must implement. In Exten-
sion Point providing plug-in, all Extensions that are attached to the Extension point can be
listed, but can be used only though the defined Java-interfaces, and so actual Java-classes that
implement the Java-interfaces are not visible. For example, Eclipse defines an Extension Point
to editors, and all editors must be Extensions to that Extension Point so that they can be used in
the system.

For ontology based programming Eclipse's plug-in architecture suits perfectly because the edi-
tors related to an ontology can be loaded only if the ontology is used, which decreases memory
footprint of the program, when the user needs only few of the all available ontologies to do his
tasks. An other way, how Eclipse's plug-in architecture is used, is that when an ontology ex-
tends concepts of another ontology, it can provide code that can handle those extended concepts

by using the Extension Point mechanism.

4.3. Ontology Development

ProConf contains its own ontology development user interface, capable of creating LayerO-
based ontologies. Basic editors include tree viewer of semantic graph (Ontology Explorer) and
editors for properties and types (Figure 19). To filter out unnecessary information, Ontology
Explorer uses viewpoints that can be used for specifying which classes and instances are shown,
which relations are traversed and shown, and which properties are shown. Viewpoints make the
Ontology Explorer and its tree component reusable in various cases, where there is a need to

show information to the user in a tree structure.

Viewpoints are also used in other parts of ProConf. When data is exported out of ProConf, for
instance, when the user wants to export an ontology, viewpoints are used for selecting what is
exported. Another case where viewpoints are used is when there is a need to copy data. In sense
viewpoints are definitions of sub-graphs. The problem with viewpoints is that the ontology de-
veloper must create a viewpoint for exporting model if the ontology is used for creating models,
and if the devel oped ontology contains certain custom structures, also a viewpoint for exporting
the ontology itself must be defined. Hence, the ontology developer must be familiar with the

concept of viewpoints.

46

Ontology Development - ProConf [1]

File Edit MNavigste Sesrch Rum - Window Window Help
! 2iv i HEEE DY R iE- Ba L g 29 |, Ontology Dev... |
=), Ontology Explorer 5% SRR e w M| 2 fitrap Image X]
[Default Viewpoint | || 4k Propertes | m)1con |00 Comments
e) % - -~
['® CJ rootLibrary 4| || Bitmap Image Properties :
& T Test Project Name and Inheritance
=11z Type System Project Edit name and inheritance for this type
B 8 Models
P : Mame:
(#-[@] Image Library F
(- [] Mapping Database | Bitmap Image
[= New Plant Type Hierarchy:
-8 Rule set =l 45 Bitmap Image
=[] Ontologies i 46 Image Inherit New Type
i, et Oenlagy Remove Inheritance
[-m, Concept Ontology
(-, CSG Modeling Ontology
(- m=f, Diagramming Ontology [[]1s abstract
- Flowshest Cntology G B
=
B }Cnage Ontolagy Edit the class description of this type. Drag properties from the left box to the the right.
[£] Extensions
: = Object Types Add Restriction
i@ @’ Bitmap Image @£, Animation Ontology = 45k Bitmap Image
‘:& Ioa by -8 Concept Ontology /B, HasRGE Data = 1
i @ Image Library 3] ém CSG Modeling Ontology /% Has Alphs Data =0..1
ke ‘@’ Mar Image: £, Diagramming Ontology /%, Has Physical Width = 0..1
| @ @‘ SVG Image @ £, Flowsheet Ontology /%, Has Pixel Width = 1
L & mage £, Tmage Ontology %, Has Physical Height = 0.1
] B
fJ lEU Property Types [f=, JBoss Rule Ontology A Has Pixel Height = 1
. B ¥ Relation Types % Layer0 B Has Hame = 0.1
i+ Rules i _
e Mapping Framework A Has Java Method Invocation =
(I eupar|ts £, Multiphose Chemistry Ontology .
=| Instance of RDF Namespace = g it U e Y
= = =
i Insta.nca of ?ﬂ'ers\un 10 | || = properties i | Error Log = =5
|1 #
Type System Project =) Advanced | Add Property
G its
bt Froperty Value
Name =’ Bitmap Image
0 | | i 13mof23sM ([

Figure 19: Ontology Developmen in ProConf. Ontology Explorer ison left, general
propertiesview isin bottom. Ontology Exlorer uses Default Viewpoint to represent
information in graph. Type Editor hasbeen opened for Bitmap Image. Itsrestric-
tionsarein bottom right corner of the editor and type hierachy on top.

44. Basic Ontologies

In addition to LayerO, ProConf contains several basic ontologies that are used in the system.

Image Ontology provides image support to ProConf. It is used for attaching SVG and
bitmap images into ontologies. Image Ontology provides mechanism to set icons to
concepts of ontologies, which are used in Ontology Explorer and other Ul components.
Structural Modelling Ontology defines concepts of structural model. It is a base ontol-
ogy for several modelling cases, including flowsheets and diagrams.

JBoss Rule Ontology is currently used mechanism to rules. It uses JBoss Rules rule-
engine, which is based on pattern matching.

Mapping Framework and its ontology can be used for creating generative mappings be-
tween ontologies. This means that if user is creating model using ontology a, and map-

pings from ato b are defined, mappings generate model based on ontology b.

47

45, DataVisualization

0} Webrmon (S=ES)
Fle Edit Help Window Webmon tests
® webmonwork.. 23| 7 5| 0 Ditrend 52 WEPW»CE 7 70 Osuface B EPHCS O
I == = e e 5
[IE=0 57 [TE=0 0S8
Q Q00 o
50,0000 % 000 o
o<
O
E]

O Test DataSource 3

[# (= Test Datasource

IS 5
=R v faceoriot =i
Metrics Editor | Error Log =0
iew View Scale Grid
Name | D trend QDisabled Xlines | 10|
Time Range () [3.3361791 | Max (%) [111.0 | Omenal tines [1]
[Fscaing T Scale all pots Min () 100 || S| =
[IMuttine

Figure 20: User interface of Webmon. Plot configuration isin the tree compo-
nent on thetop left, a data sour ce browser in the bottom left corner, a 2D trend
visualization in the middle, and a 4D surface visualization on the right.

Since ProConf is used for simulation, data visualization capabilities are one of required features
of such platform. ProConf contains data visualization package called Webmon (Web technol ogy
based process data monitoring tool) (Kalgjainen and L uukkainen 2005). Webmon is extensible
visualization package, where new visualizations and data connectivity capabilities can be added
as plug-ins. Currently implemented visualizations are 2D trend, binary signal, 2D curve, 3D
trend, 3D surface, and 4D surface (Figure 20). Webmon can retrieve data from OPC XML-DA
servers (OPC Foundation, 2007), import and export ASCII-based files, typical in automation
systems, import data from and export data to historian server. Similarly capability to read data
from Simantics' ValueSets has been added to Webmon, which allows it to visualize any simula-

tion that is run in Simantics environment.

48

5. Design

This chapter presents design phase. The design is based on the requirements gathered in the pre-
vious chapter. When we look at the requirements, we can see four cases. modelling equipment,
modelling plants, and creating mapping between plant model and simulation model, and last
configuring and visualizing simulation results. Creating mappings between simulation model
and plant model is different task to the others: it has to be done only once for each simulator,
and requires understanding of both plant model and simulation model. Therefore creating map-
pings is not a modeller’ s issue; he just uses them when he models a plant. Other tasks are more
relevant to the process modeller: he must be able to compose a plant model from provided
equipment models, create new equipment models if needed, configure and run simulation, and

last visualize simulation results. These tasks require user interface that can support such actions.

There are two choices: either combining plant modelling and equipment modelling into the
same user interface or creating two interfaces, one for each case. Since those tasks are different
from each other, most likely using latter approach will lead to better usability. This also helps
with the implementation, since one user interface component does not have to support al the
functionality. It also contributes to reusahility of the components: the user interface created for
equipment modelling can be used for other 3D modelling needs in Simantics platform. The user
interface for model ling equipment is dubbed as Shape Editor, and the interface for process mod-
elling is called Process Editor. Since visualization of simulation is partially based on animated
equipment, the equipment modelling contains both creating geometry for the equipment and

creating animations for them.

5.1. Shape Editor

Creating and editing geometric models for equipment can be divided into three tasks: creating
geometry of equipment, creating animations, and parameterising the geometry. The last step is
optional, since it is not necessary to create parameterised geometry, because thereis also equip-

ment that is used only once or may not be resized.

5.1.1. Modelling

When we look at the possihilities for geometric modelling there are two different techniques
that can be used: polygon-based modelling and solid modelling. Polygon-based modelling is
most popular of thetwo and it is widely used especially in the entertainment business. But in the
industry, where geometric models are used for production and simulation, more precise repre-
sentation is needed. Therefore most of the 3D-CAD programs are based on solid modelling,

49

which is more precise than polygon based modelling. When we compare these two, both of
them have their good sides and bad sides. For example, creating texture coordinates for solid
models can be tricky, while with polygon based models that is quite straightforward. On the
other hand, with solid models feature based modelling is feasible and it allows creating sizing
parameters for geometry, because geometric representation of solid models is parameterized.
With polygon based models, only resort could be describing position of each vertex as a func-

tion of all sizing parameters of the modd.

Then thereis the issue how the geometric model is modelled, and how to design and implement
ause interface for it. The aim was to design an interface that is easy to use, but is ableto create
geometric models of typical industrial plant equipment, like tanks, pumps, valves, and so on.
Probably the most simplest modelling paradigm is CSG-modelling, which requires creating
primitives, adjusting their properties and combining primitives with Boolean operations. Using
CSG-modelling does not bound the geometric representation; both polygon based modelling

and solid modelling can be used.

Third aspect for choosing modelling paradigm is availability of open source components that
can be used. Such components would speed up implementation process and probably add other

useful features that would not be included in the implementation otherwise.

When all these aspects are considered, CSG-modelling paradigm was chosen because of simple
concept that users can easily adapt to, and the implementation for it will not be complex. Re-
view of available modelling kernels with suitable licenses revealed that OpenCASCADE is
probably the best choice, because it supports B-rep based solid modelling, CSG-modelling, and
it can import both IGES and STEP files, which enables importing existing models given in
those formats. It also contains other useful features that can be used in future research projects.
Better description of OpenCASCADE is given in Section 6.1.2.

When looking at user interface side, and possibilities for it (Section 2.3.1), most intuitive way to
translate and rotate objects are gizmos. In addition to that also support for inputting values us-
ing keyboard must be available so that user can input precise information, which can be hard
task to do using gizmos. Luckily it will not require any effort, since ProConf is able to show

editable textual representation of objects’ propertiesin Eclipse s properties view.

50

5.1.2. Animation

Useful techniques for implementing animation system were described in Section 2.5.1. Since
keyframe-based animation is easy to use and implement, it was chosen as animation technique
for animating equipment models. This means that when a user is creating animations for equip-

ment, the user interface has to adapt to that, adding capability to create and modify keyframes.

In addition to user interface used in modelling, also user interface for editing interpolator curves
is needed. ProConf contains implementation for 2D graphics, and while it is currently used for
diagramming purposes, its components should be reused in interpolator editor. This would re-
duce implementation effort, and make use of already implemented features, like zooming and

panning.

5.1.3. Parameteisation

The aim of parameterization in the implementation is to add reusability of geometric models of
equipment. The intention is to add sizing parameters to geometries that have meaningful value,
which can be used in process simulation. While using automatic detection of constraints could
be applied, implementing such a system would be a tremendous task requiring complex analys-
ing of modelled geometry. Since that is not the research problem, but a mean to make the appli-
cation essier to use, the parameterization is done as a proof of concept without putting a lot of
time to implement it. Therefore, parameterisation of geometry is done explicitly after modelling
and animating of equipment, using editor that can be used for forming equations to define size

and position of geometric features.

5.2. Process Editor

Process Editor has to handle previously mentioned tasks: process modelling, creating simulation

model, configuring simulation, and visualizing simulation results.

5.2.1. Process modelling

Process modelling can be divided to equipment related and dipping related tasks. Equipment
related tasks include inserting them into plant, translating and rotating them, and modifying
their properties. Piping related tasks include routing pipe, inserting components into pipeline,
and modifying properties of piping.

51

Moving and rotating equipment and nozzles can be handled using gizmos as in Shape Editor,
but since it should be possible to position equipment relative to each other, snapping feature
must be introduced. As explained in Section 2.4.2, in heavily populated environments snapping
against every object will not be usable. Also snapping against objects that are at certain range
from the moved object is too restrictive. These are the reasons why snapping is implemented in

away that user can manually specify the components that are used in snapping.

As explained in Section 2.2.3, pipe routing requires user interface components that are specialy
tailored for that purpose. Automatic pipeline updates contribute a lot to usability: the user does
not have to modify each component separately when he is modifying a pipeline. Thisis crucia
in simulation configuration, because simulation can be used for testing and evaluating different

designs, which may have different layouts, which require easy modifiability of the pipelines.

Keeping structure of pipelines automatically correct introduces restrictions to positioning of
pipeline components. For example, when we think about a valve, it can be rotated only around
the pipe, and moved along the pipe without causing major changes to the whole pipeline. While
automatic updates with free editability of all components can be achieved, for usability reasons
restricting modifiability isin order. But since it is good to keep user interface consistent, custom

gizmos are used for translating and rotating them.

Since a pipeline may contain only limited set of components (some examples were givenin Sec-
tion 2.2.2), we can derive some basic user interface actions that can be used for routing pipe and

modify existing piping. The preliminary list of actionsis:

Starting a new pipeline from an unconnected nozzle

Ending a pipeline to an unconnected nozzle.

Continuing a pipdine from a loose pipe end.

Moving an dbow or multiple elbows.

Adding new ebows (splitting a straight pipe into two straights)
Removing an elbow from pipeline. (Joining two straights into one)
Starting a new pipeline from a straight pipe (making a branch)
Ending a pipeline to other pipeline s straight pipe (making a branch)

© © N o gk~ w DR

Ending a pipeline to aloose end of other pipeine (joining pipelines)

=
o

. Inserting inline parts into built pipeline.

IR
[N

. Removing inline parts from pipeline.

[EnY
N

. Moving inline parts along a pipe (movement is restricted to the pip€e s path)

[EnY
w

. Rotating inline parts (rotation axis is always the pipe’'s path)

52

With these actions only way to change the route of a pipeline would be moving ebows, insert-
ing new elbows, or removing existing elbows. The principle here is similar to editing polygons:
elbows can be moved similarly to corners of a polygon, and components between the elbows are
translated and rotated to line between the elbows automatically. Here the structure is more com-

plicated though, because a pipeline may start and end as a branch to other pipeline.

5.2.2. Mapping the plant model to a simulation model

A mapping between the plant model and a simulation model has to be done once for each simu-
lator. Simantics platform already contains mapping framework that is used for mappings on-
tologiesto each other, and it is used here for simulator mappings. In optimal case, mapping sys-

tem requires only activation by a process modeller, and after that it should work automatically.

Two ways to create mappings exists: either generating simulation model from an already mod-
elled process or generating simulation model at the same time as the user models the process.
Bath of these should be supported, since just resorting to one of the methods is not sufficient.
Latter approach can take account changes to process configuration, but is not able to generate
simulation model to already modelled process. On the other hand, the first approach requires

manual synchronisation of the simulation model.

5.2.3. Configuring and visualizing simulation

Simulation configuration depends on simulator and its data model (ontology). Since there are
many different smulators with different concepts, creating a user interface that takes account
every possible case is complicated, if not impaossible task. ProConf contains already properties
view that can be used for modifying everything in the graph, but it is usable only in most trivial
cases, where input is only an unconstrained number or text in free form. Other approach would
be using Ontology Explorer, and simulators could provide proper viewpoints for it. Only prob-
lem here is that tree structures are inadequate way to represent and edit some information.
Therefore simulators must be able to provide their own user interfaces to part of Process Editor.
They can be added either using ontologies, since Simantics supports attaching Java code as part

of an ontology, or using Eclipse’ s Extension Point mechanism.
Two different types of simulators were identified in Section 2.1: steady-state and dynamic.

Their difference in handling simulation also affects visualization: Steady-state calculates results

and then stops, while dynamic simulation keeps calculating new values. In visualization, their

53

difference is apparent: steady-state simulation updates animated equipment, but does not creete

changing animation out of simulation.

The user must be able to sdect what he wants to visualize, and how it is done. As stated in the
requirement analysis, one could prefer visualizing tank fill level with liquid height changing
animation, while other would use colour change. Therefore we need user interface components
to select and control animations, and linking them to properties of simulation model. Same goes
to exact numeric representation of simulation: a simulation model may contain multiple proper-

ties, but most likely the user isinterested only few of those.

6. Implementation

This chapter describes the implementation. The first section describes software libraries that
were used in the implementation. Next is description of the scene-graph that is designed as a
common data structure for 3D graphics in ProConf. The scene-graph is common for both Shape
Editor and Process Editor, which are described last.

6.1. Used software components

To ease up programming effort, existing software components were used. These are JME, which
isalibrary that renders 3D scenes and contains interaction capabilities: Another library is Open-
CASCADE, which is modelling kernel for CSG- and B-rep based modelling.

6.1.1 jME

JME (jMonkeyEngine, 2006) is open source (BSD type of license) scene-graph library imple-
mented in Java. It abstracts the rendering implementation, but currently only implemented in-
terface is LWJGL (Light Weight Java Gaming Library). J]ME contains several useful features
that can be used in implementation:
Scene-graph hierarchy: allows easier scene compositing capabilities, including anima:
tions.
Frustum culling: renders only parts of the scene that are potentially visible, improving
rendering performance.
LOD-support: jME supports discrete LOD and CLOD techniques, which can be used
for achieving better rendering performance.
Render-to-Texture support: can be used for rendering more complex visualization ef-
fects.
Impostors: can be used with discrete LOD as a lowest quality mode.
Picking (triangle-ray intersections): this is required for building user interfaces for 3D
applications.

Particles: can be used with flow visualization.

JME is designed for Java-based games, and so it has several limitations like support for only one
window at once, but because of the BSD license, that was changed. Another feature, that J]ME
lacks, is occlusion culling. While most likely scenes generated with process editor will not con-

tain much occlusion, Coherent Hierarchical Culling (Bittner et al. 2004) was implemented.

55

6.1.2. OpenCASCADE

OpenCASCADE is modelling kernel that constructs solids using boundary representation and it
is able to generate triangulation to solids. It also supports CSG-style of modelling by providing
union-, intersection- and difference-operations between solids. Development of OpenCAS-
CADE dtarted in 1993 with name CAS.CADE (Computer Aided Software for Computer Aided
Design and Engineering), and it got its current name in 1999 when Matra Datavision published

it asan open source library.

Import and export functionality of OpenCASCADE is good since it supports importing and ex-
porting of IGES and STEP (AP203/214) files, exporting STL (stereolitography) and VRML
files, and importing and exporting its own file format. This kind of functionality is valuable be-

causeit allows data exchange between other CAD/CAM applications that support those formats.

OpenCASCADE also includes its own application framework and graphical user interface
framework but those cannot be used without compromising consistency of the user interface
because of Eclipse environment. There is no technical restriction for its use: the application
framework contains also Java implementation, but it contains AWT-based user interface imple-
mentation, while Eclipse is based on SWT. Therefore only geometry modelling features, and
import/export functionality of OpenCASCADE is used in the implementation.

6.2. Scene-graph

Since the system is ontology based, also scene-graph needs its own ontology. Instead of invent-
ing own scene-graph concepts, we use X3D (2007) as specification as a basis for our scene-
graph. Using ontology gives better ways to describe relationships between objects and proper-

tiesthan X3D; therefore its concepts are not just copied to ontology format.

Scene-graph and its concepts are put in ontology called 3D modelling ontology. Basic type for
scene-graph node is GraphicsNode, which may have position, rotation, and centre, and as in
typical scene-graph, node has one parent (or none if node is root) and may have unrestricted
amount of children. Here the presentation differs from X3D that has transformations as separate
nodes in scene-graph. This is done becauseit is more natural way to describe position and orien-
tation of an object instead of creating separate nodes for them. Each of those properties is op-
tional; missing property means identity transformation. Because of that, it is possible to con-
struct a scene-graph in X3D’s style with separate transformation nodes, while that is not the in-
tended way to useit.

56

Because of parent and child relationship, GraphicsNodes form a tree structure that supports hi-
erarchical transformations. Since the purpose of the scene-graph is to support editing, collapsed
form of transformations are also stored. This allows scene-graph handling algorithms to handle
all 3D objects in the same coordinate system. Collapsing of transformation hierarchies is
achieved by propagating transformation changes in the scene-graph tree. Collapsed transforma-
tions are called world transformations, and nodes transformations relative to the parent node
are called local transformations. Propagation is based on rules:

- If local transformation changes, world transformation of the node and every child must
be updated.
- If world transformation changes, local transformation must be updated and children’s

world transformations must be updated.

Rule-based transformation propagation has its weaknesses and strong points. Rule-based propa-
gation is slower than propagating transformation directly in the scene-graph implementing code,
and most of the time it is unnecessary, because collapsed form of transformations is rarely
needed, but it allows other components and editors to modify scene-graph without them know-
ing dependencies between objects. Therefore without rules transformation changes would not

be propagated and the scene-graph could end up in inconsistent state.

ShapeNode, which is used for geometric objects that have visual representation, is inherited
from GraphicsNode. It does not specify any other features, but in the actual visualization im-
plementation leve it has special handling; ontologies that define subclasses of ShapeNode must
provide code as an Eclipse extension to handle provided classes so that they can be visualized.
This is the way how higher level 3D-editors (Process Editor as an example) can be imple-
mented, without coupling them to specific geometric modelling concept, and other modelling

concepts can be added, requiring no changesin higher level editors.

For shape modelling support, the ontology has a separate relation for defining internal structure
of a shape. While “Has subnodes’ -relation is used for describing standard scene-graph structure,
“Has subgeometry” -relation, inherited from “Has subnodes” -relation, is used for describing that
achild nodeis actually contributing to its parent’s geometry. This allows easier handling of both
visualizing and editing features; editors can traverse “Has-subgeometry”-relations to show all
needed visual features for geometric modelling, but components that use shapes only for visu-

alization purposes can omit those.

57

Material definitions, including colours and textures are described in 3D modelling ontology
very similarly asin X3D. One of the differences is that X3D uses separate data arrays and as-
sumes that the reader can map items in multiple arrays to each other by their index, but in onto-
logical format such arrays can be decomposed, and no assumptions are necessary. This is used
for describing multi-textures and other properties in the scene-graph. Also data structures for
images can be left out, because ProConf contains Image ontology that is capable of handling
bitmap images and rasterising vector graphics. For instance, Image ontology contains support
for SVG (Scalable Vector Graphics) images.

While X3D has support for user actions in the scene-graph, 3D modelling ontology does not
support them. Attaching user interface related nodes to scene-graph is convenient only when the
scene-graph is built only for one purpose, which is contrary to the requirements since the same
model of a plant is used both in modelling and editing the whole plant, modelling and animating
a single equipment, and visualizing (and configuring) of simulation of a plant, which all require
different user actions. Therefore user interface is provided by software components that must

interpret used ontology and context of use and build user interface according to that.

Other feature that X3D has, but scene-graph ontology does not have, is basic geometric
primitives. This is because primitives, such as spheres and cones, are not useful in more com-
plex applications, and ontologies extending 3D modelling ontology can provide primitive
shapes by themselves, if they need them. Also audio-support was not considered useful, struc-
tures for animatable humans and geospatial data are more domain specific cases and are not
supported in base ontology, but could be easily added by creating new ontologies derived from
3D modelling ontology.

Basic design principle in 3D modelling ontology is that it supports only those features that are
necessary, and other features can be added by creating new ontologies and code to handle those
ontologies. This goes according to the design principles described in section 2.6.5, where mini-
mal ontological commitment was considered as good feature that enhances reusability of on-

tologies.

6.3. Shape Editor

Shape Editor must be able to handle modelling of equipment, creating animations for them, and
last parameterize the geometry. In the design chapter we decided to use CSG-modelling for
modelling equipment. Therefore we will have to create an ontology for concepts of CSG-

modelling. Another ontology that we need is Animation ontology. When concepts of animations

58

are separated to its own ontology, it can be reused in other modelling schemas. We will discuss

about these two and the geometry parameterisation implementation in the next three sections.

6.3.1. Geometry

The implemented Shape Editor alows user to create new instances based on CSG-modelling
ontology (Figure 21), which is derived from 3D modelling ontology. CSGShape-type is inher-
ited from Shape, so that shapes used in CSG-modelling can be differentiated from other shapes.
This is done because modelling kernel must be able to interpret al shapes to form visual repre-
sentation, and it cannot be guaranteed that the used modelling kernel could support every shape
in the system. CSGShape is divided to Primitive and Boolean Operation types. Boolean Opera-
tion is divided to Union, Difference, and Intersection operation, and it may contain multiple
CSGShapes. Here the logic with Difference operation is that all shapes are intersected from the
first shape attached to the operation. With Union and Intersection operations order of the shapes
does not affect the result. Primitive typeis further divided to actual primitives, like Box, Sphere,

and Cone, which have unique properties for defining their sizes.

GraphicsNode 3D Modelling Ontology

£\

GraphicsModel 1

CSGModel n CSGShape CSG Modelling Ontology
*

Il

| Boolean Operation

2.*

Primitive

| Box || Sphere

Intersection Operation | Difference Operation | Cone

| Union Operation |

Figure 21: Type hierarchy of CSG-modelling ontology. Diagram does not contain
all primitive shapes.

On the user interface side, use can move and rotate shapes using gizmos. | mplemented translate
gizmo issimilar to triad cursor in (Nielson & Olsen 1986), but instead of using picking position
to map mouse coordinate to 3D, user can interactively select one of the axes or one of the axis-
aligned planes whom along he can move the selected object by dragging the mouse. In Figure

22, the user moves the cube along x-axis (red arrow is highlighted). Similar behaviour is used

59

with rotate gizmo: the user may interactively select rotation axis and dragging the mouse
changes rotation angle. More exact trandating and rotating can be done with Properties View,
which is also used for changing sizing parameters of primitives. Mathematically the implemen-
tation of gizmos is similar to method described by Phillips et a. (1988), where trandation of an
object is calculated from intersection of the mouse ray and ray of an axis when the object is
translated along the axis or the intersection of the mouse ray and a plane if the object is trans-
lated along the plane.

Figure 22: Trandate gizmo (left) is used for moving objects and Rotate gizmo

(right) isused for rotating objects.

When the user selects more than one object (primitive and / or shape of Boolean operation), the
user can create a new Boolean operation (union, intersection or difference) using context menu.
Shapes inside of a Boolean operation can be moved and trandated, but they must be selected
using Ontology Explorer before they can be modified. These interior shapes are only visible
when user has selected them and to distinct them from the model, they are visualized with trans-
parent colour. Selection of an interior shape can be seen in Figure 23, where the user has se-
lected a sphere from an intersection of a box and the sphere. Selection of visible shapesis visu-
alized by changing colour of the object and highlighting edges of the shapes in way that they
can be seen through other objects. This evades the problem described in Section 2.3.2, where
Phillips et al. (1992) changed the position of the viewpoint when modified object was occluded
by other objects. Using see trough edges avoids changing the position of the viewpoint, which
can be problematic for the user. For performance reasons, the whole CSG-model is not updated
real-time when the user moves or rotates a shape using gizmos. Instead the shape that the user
moves is moved interactively on the screen, and when the user stops moving or rotating the
shape, the whole CSG-modd is updated. Another case, when the whole model is updated is
when the user changes sizing parameter of a primitive, sincethat is done using Properties View,
instead of gizmos and there is no interactivity in the action.

60

Ontology Development - ProConf [1] =1

Fle Edit MNavigate Search Window Run Window Help

cl sition
[World Rotation

o MofisomM ([

Figure 23 : CSG-modeling interface. Editor showsinter section of a box and
sphere. Structure of the model is shown in Ontology Explorer (right). The
sphereis selected and its properties are shown in properties view (bottom).

6.3.2. Animation

The animation implementation uses similar structure to X3D, where interpolators are used for
changing geometrical and material properties. Interpolators are combined to a single animation,
and one geometric model may contain multiple animations. Since there may be need for anima-
tion of geometry defining components of the model, like animating CSG- models by changing
properties of primitives, animations are divided into two cases: real-time animations, where all
animated properties can be changed on the fly, and pre-calculated animations, where properties
of sub-geometry are modified and recalculation of geometry would take too much time. The
limitation of pre-calculated animations is that the same animatable object can use only one of
them at the same time, because using multiple geometry changing animations would require
calculation of al possible combinations, which would result large amount of pre-calculated
meshes.

The structure of animations is in Figure 24, which shows difference of real-time and pre-
calculated animations. Pre-calculated part of animations is interpolators that modify properties
of shapesthat are connected to their parent using Has Subnodes-rdation. If a shapeis connected
to its parent with Has Subnodes-relation, all its children must be connected also with the same

relation. Therefore if an animation needs pre-calculation, its interpretation is easy.

61

Graphics Model Animation Interpolator [« 4
Real-time

Shape Appearance Property <l

r : HEH

Property <

Has Subgeometry I
Has Subnodes

Shape Shape Property <
L Pre-calculated

Has Subgeometry

Figure 24: Logical structure of animations. Animation scan be either real-time or
pre-calculated, which depends of if animation changes geometric featuresor not.

Animation concepts are separated to their own ontology, but are considered as a basic feature of
3D modelling, and therefore it is dependency of 3D modelling ontology. By separating anima-
tion ontology, both 3D modelling and 2D graphics ontology, which is implemented in ProConf,
may use the same ontology. Animation ontology itself does not contain any specific interpola-
tors, and must be extended to give precise meaning for them. Similarly to handling of shapes,
animation ontology contains an Eclipse extension point, and those ontologies that specify inter-
polators must also provide code for handling the interpolators. Two specific interpolator types
were implemented: 1D TCB (Tension, Continuity, Bias) interpolator as generic interpolator and

Slerp (Spherical Linear Interpolation) for interpolating orientations.

The user interface for creating animations is implemented into Shape Editor. Shape Editor can
be set to animation-state, where it adds user interface components specific to editing animations.
These include timeline controller, buttons to manage keyframes, and a separate view for editing
and adjusting interpolator curves. The view for editing interpolator curves is implemented with
the same principle as higher level editors: it is not bound to any specific interpolator type, and
because ontologies that specify new interpolators have to export code to use them, interpolator
editor is able to edit al interpolators that are provided by ontologies. An example of the user

interfaceisin Figure 25, where the user is creating a walking animation for amodel of arobot.

62

He £ Mo Seach Whdn B W teb
aic HAEE SYIOR G008 IS IA F 3 [, ontongy ev..

=), Ontology Expl... 22| T O || [cSG Animator 53 7] & =0

Cntalogy Expl

B [T nterpolators

175

eMof it |

Figure 25: The user interface for creating animations. The leg of the robot is selected and curve
editor showsits animation curves. Buttons for managing animations and keyframes ar e beneath of
the 3D view.

6.3.3. Parameterization of geometry

Two types of parameterizations are supported: parameterization modelled as relations in the
graph and code generated geometry. Parameterization made with relations contains two con-
cepts: sizing parameter that is attached to a geometric model and relations that describe second
order equations. These relations are used for linking sizing parameters and properties of geome-
try definitions, like position and size. When a sizing parameter of a model is changed, rules cal-
culate new values of properties based on second order equations form of Ax2 + Bx + C. In equa-
tion, constants A, B, and C can be customized for each property, sizing parameter is inputted as
X, and solution of the equation is the property’s new value. This kind of parameterization has a
major restriction: each property of a shape can only depend on one sizing parameter and there-

fore only very simple geometric shapes can be parameterized.

Automatic parameterization of geometry is generated with an assumption that the size and the
position of primitives are linearly dependent of sizing parameters. Therefore, it generates first
order equations; in above equation constants A and C are set to zero. The user interface for ge-
ometry parameterization divides parameterisation process into tree steps. First the sizing pa-
rameter is selected, or new created and its value is set to a value that is used for calculating
equations. Herethe principle is that the user creates parameterization values such as they repre-
sent the model in its current state. In the second step the user selects shapes that are going to be
parameterized, and in the third step he selects common properties of the selected shapes that

63

dependent to the selected sizing parameter. After that he presses a button that generates con-
straint equations. The second and the third step can be done and some times have to be done
multiple times for the same sizing parameter, because in the third step common properties are
selected, instead of properties of individual shapes. The user interface for parameterization is set
to next of Shape Editor, and therefore the user can test how the generated parameterization

works, and fix potential problems.

Figure 26: Parameterized models of equipment. Thetank contains
fluid level changing animation, which is also par ameterized.

Figure 26 shows equipment, a tank and a pump, which are parameterized with the described
procedure. The tank is composed from intersection of a cylinder and a sphere that rounds the
ends of the tank, and two boxes acting as legs. Liquid inside the tank is also formed with inter-
section of a cylinder and a sphere, and in addition to that, the resulting shape is intersected with
a box, which enables adjustment of the fill level. The pump is composed of multiple cylinders
and a box. Parameterization of the tank could be done directly with the implemented user inter-
face, but the pump was different case: sizes of motor, shaft, and volute chamber depend on each
other, because linear mapping would make the shaft too long for larger pumps. Therefore man-
ual adjustments to equation describing those sizes had to be made, so that the pump looks cor-
rect in different sizes.

ProConf supports attaching Java-code as part of an ontology and it is capable of compiling it
runtime. Therefore a natural way to create “unrestricted” parameterized geometry is coding.
When OpenCASCADE is aready part of the system, the user has a powerful modelling kernel
at his disposal, and so code based geometry generation is not restricted only to CSG-based mod-
elling, but also sweeps, lathes and other more complex modelling methods can be used for com-
posing geometry. The major restriction of code-based geometry is that there is no semantic in-
formation about the geometric structure and animations that modify the geometry cannot be
used with them, at least with the current implementation. The problem is not attaching interpola-
tors, but parameterizing interpolators themselves. Current parameterization implementation is

able to calculate parameterization of interpolator curves that change geometric properties, but

only if geometric relationships are available.

6.4. Process Editor

Process Editor contains features for modelling a plant, configuring simulation, and visualizing
the simulation. We will introduce a new ontology for plant modelling, describe the system that
handles pipe updates, user interface for plant modelling, and simulation related user interface

concepts in the next four sections.

6.4.1. Plant modeling ontology

Plant modelling ontology is derived from 3D modelling ontology and Structural modelling on-
tology. 3D Modelling ontology is needed, because we are describing graphical 3D representa-
tion. Structural Modelling ontology brings various features, including easier mapping to other

ontologies using it.

Similarly as with 3D Modelling ontology, we are not going to invent concepts of plant model-
ling oursdves, but use existing specifications and taxonomies as basis for it. In here we use
combination of SmartPlant3D’s and SO 15926's names and concepts, but in very reduced
form. For example, 1SO 15926 defines thousands of concepts that are related to process indus-

try, but using all of them would complicate our design without giving any real benefits.

Main concepts of Plant modelling ontology are Equipment, Nozzle, Pipeline, and Pipeline Com-
ponent (Figure 27). Their basic usage is that equipment contains nozzles that are connected to
each other with pipelines. Pipelines can be connected to nozzles and to each other with reducers

and branch connections.

A pipeline is formed by one or more Pipeline Components. Pipeline Component is further di-
vided into Pipe Component, Inline Component, and End Component. Pipeline Component,
Equipment, and Nozzle are linked to their graphical representation using “Has Graphics” rela-
tion. This enables reuse of graphical components: for example, a plant may contain multiple
tanks (instances), but each of them is linked to the same graphical representation of the tank.
Equipment, Inline Component, and End Component are intended to be inherited for further spe-
ciadlization. For instance Tank and Pump are Equipment, Valve and Flange are Inline Compo-
nents, and so on. Pipe Component describes basic components of pipeline: elbow, straight pipe,

and reducers. These are already included in the ontology and no further classification is needed.

65

Difference between Inline Component and End Component is that End Component describes a
component that is attached to the end of a pipe, connecting to only one other component, while
Inline Component is attached to two other components allowing the pipeline to continue in a
valid installation.

Structural Modelling Ontology 3D Modelling Ontology
Structural Object GraphicsNode
i T 1
has terminal /|terminal of | |
Graphics Model Shape
Terminal)
4 i has graphics
[|
Plant Pipeline Pipeline Component
1 A
[|
Nozzle Equipment Inline Component End Component Pipe Component
has nozzle / nozzle of L T
[|
Tank Valve Cap Reducer Elbow Straight
) Concentric Eccentric
Plant Modelling Ontology

Figure 27: Typediagram of Plant modelling ontology.

6.4.2. Pipeline modelling

Technically the most difficult part of the piping is modifying already routed pipe, beacuse the
structure of the pipes must be kept correct (Requirement P6). It means that all parts that are con-
nected to each other before modifying the pipe must be connected to the same components after
the modification, and their position and orientation must be updated so that all components are
perfectly aligned to neighbour components and they do not overlap each other. These structural
rules arelisted into Table 2.

Just keeping components connected to each other will not suffice if editing is intended to be
easy; designer’s intentions must be taken account. Similar rules that were used for interpreting
user’s intentions in a sketching system Andler & Mendgen (1995) (Section 2.4.2), can be used
in piping. These rules should reflect the requirements and typical scenarios in piping (Require-
ment P7). This includes that 90 degree elbows and 90 degree branches should be endorsed, be-

66

cause those are easier and cheaper to construct. Rules that are used for interpreting designer’s
intensions are described in Table 3. The basic principle with those rules is that the user places
the equipment and nozzles where he wants them to be, and rules must not change their position.
Rules IR3, IR4, and IR5 must be interpreted so that if the user modifies a pipe that was routed
for instance along axis, that rule should not be forced. With opposite handling, the result could
lead to modification of the whole pipeline because structure of the pipeline must be kept correct.
Rule IR2 is also important because if new components are inserted into the pipeline without
user conformation, it is most likely that the inserted component is something that the user does
not want to appear in the design. Only case where components may be inserted automatically is
a case where only way to fulfil the structural rulesis to insert new components to a pipeline, or
to fulfil logical rules and insert necessary components to a pipeline, for instance, insert flanges

when avalve isinserted into the pipeline (Requirement P8).

Table2: Structural rules. Theserulesare for keeping structure of pipelines correct.

ID Description of rule

SR1 Connected components must be aligned to each other.

SR2 Inline components must be aligned to the path leg's direction.

SR3 Components may not overlap each other.

SR4 Components may not overlap branch connection.

SR5 Each inline component takes certain amount of space: straight part of the pipe must
have enough length so that all components that are connected to it have enough space.

SR6 Inline components may not be inserted into elbows.

SR7 Unnecessary and invalid components should be removed automatically, including zero

angle elbows and zero length straight pipes.

It must be noted that these restrictions cannot be met every time. Especially some of the rules
that are used for catching user’s intentions are hard to fulfil in many cases. When all the rules
cannot be satisfied, it becomes very important to drop out right restrictions so that user’s inten-
tions may be interpreted correctly. Now the list of rules is ordered by importance levd; rules
that are dropped first are the last ones in the table. Only exception is the first rule (IR1), which
must always be met, since it can be assumed that the user has placed equipment into positions
where they should be. This adds another requirement for structural rules because the designer
can place the nozzles in a way that there is no possible correct route for the pipe, and therefore

rules should inform the user about bad design that they cannot fix.

These rules are also good basis for snapping, which can be used with trandating pipeline com-

ponents. But instead of using manual selection of components that are used in snapping, like

67

with translating equipment, components can also be selected automatically. For instance, if the
user tranglates an elbow, the previous and the next elbow in the pipeline can be used for snap-
ping the position of the trandated elbow, and so the user can easily modify piping to go along

axes or parallel to axis aligned planes.

Table 3: Intention rules. These rules try to catch designer’s intentions with automatic structural

updates.

ID Description of rule

IR1 Position of equipment and nozzles is never modified by therules.

IR2 New components are inserted by rules only when there is no other way to satisfy struc-
tural rules.

IR3 If user models a pipe to go directly along certain coordinate axis, after modification the
pipe should go along the same axis, if the pipe itself was not modified by the user (Re-
quirement P7).

IR4 If user models a pipeto go parald to acertain plane, after modification the pipe should
go paralle to the same plane, if the pipe itsdf was not modified by the user (Require-
ment P7).

IRS If branching pipes are perpendicular to each other (tee) after modification pipes should
be perpendicular to each other, if the pipes were not modified by the user (Requirement
P7).

When we think about geometry of pipeline, it can be divided into path legs that maintain the
same run direction. When path leg is used for classifying components, it describes two types:
path leg ends and inline components. Inline components are parts that always lie on a straight
between path leg ends, which includes straight pipes, valves, and flanges. Path leg ends are
components like elbows and caps. There are a'so components like tees that are both inline- and
path leg end components, depending of the direction where the component is approached. This
classification is different to previously described classification of equipment and pipeline com-
ponents (Figure 27); the idea here is to describe geometric and structural classification, while
previous one focused on the user’s point of view. Therefore it is easier to divide the piping
structure to two parts: Structural rules that keep positions of pipeline components correct: valves
and straights between path leg ends, and so on, and other set of rules that keep logical structure
of pipelines correct (Requirement P8): valves are connected to flanges that are connected to
other components, and so on. Those rules are fundamentally different because structural rules
are required to update real-time, since the designer must be able to see changes in the pipelinein
order to do interactive designing (Section 2.2.3). Logical rules are tested only once, either pre-

venting the user doing wrong things or automating modelling by inserting necessary compo-

68

nents, for example, inserting flanges automatically when the designer inserts avalve into a pipe-

line

In order to keep those rules in differentiated, another structure in addition to equipment and
component structure is needed. This structure is the control point structure, and it is based on the
idea described in Section 5.2.1: piping is edited similarly as editing polygons. The control point
structure is tightly linked to the component structure, describing positions and orientations of
components. Ideally al position modifications are done on the control point structure level, and
when it is changed, the component structure is updated. Those structures must be linked both
directions, because when control points are positioned, sizing parameters of components are

needed from the component structure.

Using above classification, we divide control points to two types: Path Leg End control points
and Inline control points. As described, Path Leg End control point is the base type for all con-
trol points that are in path leg ends: elbows, end components, branch ends, and pipe ends. Inline
control point is the base type for control points that are used keep components and branches
connected to a straight pipe. It is aligned directly between path leg's ends. There are several
policies that are used when Path Leg End control points are modified and those depend on what
type the control point is. We will list all specific control point types next, and type diagram of

control pointsisin Figure 29. Examples of control point usage arein Figure 28.

Turn contral point: Turn control point (Figure 28, top) is used with elbows. This control point
connects two path legs together. In order to fit elbow’s geometry, next and previous component
will have a certain offset from the control point. The offset is calculated using angle between

path legs' directions.

Directed control point: This type of control point is used when a path leg's direction cannot be
changed, for example, when a pipe is connected to a nozzle. Using a directed control point re-
quires that the path leg’s other end must be in the position where directed control point points
to. An example of this can be seen in Figure 28 (second from top), where a turn control point is
moved upwards and a new turn control point isinserted to satisfy the restriction of directed con-

trol point.

The same figure can be used for visualizing another case: if the user moves the piece of equip-
ment instead of the elbow, the pipeline can be updated two ways. On the right, the style is same
as previous. generate new control point and add an elbow to the pipeline and leave the elbow on

the left side intact (right). On the other hand the user may want to keep the elbow aligned to the

69

next straight pipe and avoid insertion of a new elbow. Therefore the second style is to move the

elbow on the left side so that it is aligned with the nozzle and run direction does not change.

Figure 28: Different control pointsand how they behave on modification. Turn Control Point (top),
Directed control point, Inline Control Point and Size Change- and Offset Control Point (bottom).

70

Pipe Control Point

A\

[
| Path Leg End Control Point | Inline Control Point
A

| Turn Control Point | | Branch End Control Point | | Branch Control Point | | Inline Component Control Point |

| Directed Control Point | End Component Control Point | | Offset Control Point | | Size Change Control Point |

Reducers

Figure 29: Typediagram of Control Points

Two types of control points are inherited from inline control point: Inline Component control
point and Branch control point. Inline Component control point is used when an inline compo-
nent, for example, a valve is placed into a straight pipe. Branch control point is used with
branches. These cases require separate handling because one could add several branches into the
same position, but components cannot overlap each other. Another reason is that when inline
component is moved, updating rules need to take account only what is on the same path leg, but
with branches also every branch’s path leg and their components can affect the decision of the
updated paosition. This is demonstrated in Figure 28 (second from bottom), where the branch’'s
position in the modified path leg is calculated so that the branching path leg's direction stays
vertical in both cases: when the lower elbow is moved up and down (middle figure) and when it

is moved left and right (right figure).

There were two different solutions that could be used with branches: either use separate
“branch” relation with next and previous relations or duplicate branch control point for each
branch. In the first case pipeline system with al branches would contain only one control point
structure but traversing the structure and reasoning what control points belong to which pipeline
would be very complicated process. On the other hand the second case requires special attention
with the branches, because coordinates of all control points must be kept same. After some test-
ing, the second approach was considered easier to handle. Therefore Branch control point also
has a pair: Branch End control point that is used from branching pipelines side and it is inher-
ited from Path Leg End control point. The idea is that for each Branch control point there is one
Branch End control point for each branching pipeline, and all those control points are kept in the

same position.

71

Like braches, also reducers need special attention. Two types of reducers exist: concentric and
eccentric (Figure 28, bottom). Concentric reducer is simpler case of the two because it keeps the
centreline of the pipe and the path leg intact. Eccentric reducer is more complex because the
centreline of the pipe changes. To further complicate the situation, the reducer can be rotated
and if the path leg’' s ends are kept in same positions, the path leg’s direction changes. To solve
this problem, instead of using one control point, reducers use two control points: Sze Change
Control Point and Offset Control Point. The position of Offset Control Point is always calcu-
lated relative to Size Change Control Point using required offset that depends on pipe diameters
on both sides of the reducer, and the rotation angle of the reducer. When the control point struc-
tureis traversed, depending on the side the reducer is reached, traversing ends to Size Change
Control Point or Offset Control Point. Using this mechanism avoids creating special case for
straight parts, but also complicates changing control point structure, since when a control point
is inserted (or removed) next to reducer’s control points, both reducer’s control points must be
re-linked. A reducer acts as a boundary between two pipelines because their diameters are dif-
ferent. For easier handling, Size Change control point is kept as other pipeline’s control point

and Offset control point other pipeline s control point.

Last type of control points is End Component control point. Similarly as inline components,
also end components must have their own control points. It is used with components like caps.
It does not have any restrictions for its movement, and it calculates orientation from its angle

property and position of the adjacent control point.

An example of a pipeline and its control points are in Figure 30. All control points are linked to
each other with “next” and “previous’ relations with an exception of branch control point,
where all branches are linked with “branch” and “branch of” relations. Straight pipes are at-
tached to two adjacent control points. The length of a straight pipe is calculated from the dis-
tance between control points and using offset value in control points, which prevents straight

pipes from overlapping inline components and elbows.

When the user modifies piping parameters it is important to find correct set of control points
that must be updated. Current implementation of the Piping Rules (Figure 31) assumes that only
one control point is moved at the same time: modifying multiple control points at the same time
can be handled with the same rules, but more work has to be done because the rules must be

applied to each modified point separately.

72

Figure 30: A sample pipeline and its control point structure. DCP: directed control point, TCP:
turn control point, CCP: Inline Component control point, BCP: Branch Control Point and BECP:

Branch End contral point.

Pipe updating rules are run when a change in the control point structure is detected. First is
checked if the changed control point is inline or path leg end control point. If modified point
was path leg end, all path legs connected to it must be updated. Path legs can be divided into
three types; ones with fredly modifiable ends, like elbows (free update), ones with one freely
modifiable end (directed update), and ones whaose both ends are locked into their positions (dual
directed). In practice this means that depending of how many nozzles the path leg is connected

to, updating rules are different.

Since the rules must take account that elbows must be removed when their turning angle goesto
zero, because zero angle elbows cannot exist (SR7), both free update and directed update must
check if elbows can be removed. Removing is tested with recursion: algorithm tries to remove
an elbow whose turning angle is near zero, and then checks if the resulting path leg (removing
of an ebow joins two path legs together) is valid by using the same path leg updating proce-
dures. Removing of an elbow may only fail when at least one of the new path leg ends is di-
rected; if checking of alignment of directed ends fails, recursion takes one step back and then
proceeds finalizing the path leg.

73

Position
? 5 No
Update Changed ? > Yes»<_Is Run End 7 No
Yes

Has Control
points on both

Update both

sides ? sides
A,
Update Inline control
N:’ points

l«——For both path legs

Update path |« — — ———For each branch———— — — — - reducers .
leg Yes (lterat th - component connections
es (lterate new path leg) Update ends - feedback from branch
(elbows),
ends
Remove turns
(if needed)
T L
No
Are ends of Can one or both
Update free
path leg No» ath le ends removeved Update new path
directed path leg (Turn / elbow) ? legs)andthe |«
split path leg
Move other end Add one turn
; Move back
to place where near the directed ;)
o one iteration
it's aligned end
7 x 1
Yes Yes No
Yes
One Can other end Iterating path
moved to place
e leg ? (removed
where it's aligned turn)
yith directed end
Both
Update)
) end aligned
B d|recT:d path to directed
79 end
Yes Yes
J
Update dual Are ends Iterating path Create two turns near the
- directed path aligned to No leg? (removed No modified end to keep
leg each other, turn) directed ends aligned

Figure 31: Flow diagram of Pipe Updating Rules. Boxes with round corner s describe functionality
that could be decided by the user.

In cases where testing of directed control point’s alignment fails (directed and dual directed up-
date) and the algorithm is not testing new path leg, becauseit is trying to remove an elbow, path
leg can be kept valid only if the other end is moved to proper position or a new elbow or elbows
are inserted, which results creating new path legs. When the algorithm is updating a dua di-
rected path leg, moving the other end is not possible and the only possible way to update the

74

path leg is to insert two elbows; one elbow for each directed end. When a directed path leg is
updated, the procedure depends on the path leg end that the user changed: if the user moved di-
rected end, the other (free) end can be moved to proper position, but when the user moves the
free end, a new elbow must be inserted. When a free path leg is updated, insertion of new €l-
bows is not necessary. These update policies take account of rules IR1 and IR2, which state that

nozzles cannot be moved and new components should be inserted only if necessary.

After creating new path legs or moving free ends, all modified path legs must be finalized by
updating run ends (for example turning angle of elbows), and then updating al inline control
points on the path leg, so that components are aligned to each other (SR1 and SR2). If afinal-
ized path leg contains branches, each branching path leg is updated using above procedure. In
this step, also directions of branches' path legs are taken account so that their run direction is
kept unchanged if possible, which helps usability (IR3, IR4, IR5). At the same time, compo-
nents' sizes can be taken account so that components will not overlap each other (SR5 & SR6),
but when there is not enough space for components, only proper solution what could be thought

of istoinform the user about the problem.

Two examples of pipe updates are in Figure 32. When the elbow on the top is moved from its
initial position (Figure 30), path legs from both sides of the elbow has to be updated. Other of
the path legs is directed path leg, because the pipe is connected to a nozzle. When the elbow is
moved to the right (left figure), it is still aligned with the nozzle, but when it is moved down
(right figure) a new nozzle has to be inserted. When the nozzle is moved back to its original po-
sition, the inserted elbow is removed. The designer’ s intentions are also take account; independ-

ent of how the elbow is moved, the branch keeps its run direction (horizontal pipeinthefigure).

Figure 32 : Automatic update of pipeline. When elbow is moved right, path legs
are updated (left). When elbow is moved down, new elbow iscreated (right). Ini-

tial position of moved elbow isin Figure 30.

75

6.4.3. Plant moddling user interface

Process Editor shares part of the implementation with Shape Editor. Gizmos used for rotating
and tranglating equipment are the same as were used in Shape Editor to move shapes. Similarly
as with Shape Editor, proper actions that user can do, depend on selected objects. For example,
if atank is selected, Ul shows actions to translate and rotate the object, remove the object, and
focus on the object (rotate camera towards it), but when the user selects a nozzle, in addition to
those actions the user has ability to route pipe, if the nozzle is not connected to a pipe. If the
user trandates or rotates an inline component, like a valve, gizmos are different than with stan-
dard equipment; the user may translate an inline component only along the pipe whereit is con-
nected and rotate it around the pipe. As in Shape Editor, user may select multiple pieces of
equipment and move all of them at the same time. With inline components the caseis different:

Only those components that are on the same path leg can be moved or rotated at the sametime.

To help pipe routing, the user is given option to lock one of the axes (X,Y,Z) and route pipe
along that axis. Also routing parallel to axis-aligned plane (XY,XZ,YZ) is possible (requirement
P7). To aign a pipeto other pipe components and equipment, the user may click them and add
them to snapping list. The snapping list contains all objects that are used for snapping. If the
snapping list contains objects, pipe routing tries to snap to given positions or axis aligned planes
defined by a point. For instance, the user may add a nozzle to snapping list, start routing a pipe
from another nozzle towards the nozzle along a certain axis and tool will snap the position when
coordinate value in selected axis of the snapped nozzle and the routed pipe is nearly the same.
Example of thisisin Figure 33, where the user isrouting a pipe along Z-axis, and routing snaps
to position of a nozzle. That way the user may easily route pipe that uses only 90 degree elbows.
Ancther feature of snapping is that if a straight pipe is added to snapping list, pipe routing may
be set to route pipe exactly the same direction as the straight pipe in the snapping list.

76

B TestPlant Process Editor X DRETROR - B34 ,I,||l?,(7 s Eli

FPS: 32 - Count@ Mesh(118) Vert(26502) Tri(15108) Line(1071)
Point/Plane z-snap (0. 7500000000000002, 3.367090526467171, 34.1)

Figure 33: Routing a pipe. Pipe routing snapsto position of the
nozzleand it is highlighted with blueline. Routing isrestricted to
Z-axis, and Z-axis button in toolbar (top) is pressed down.

Moving of elbows of already routed pipe is helped in the same way. When the user starts to
move an elbow, the next and the previous path leg's end is automatically added to the snapping
list and moving of the elbow can be snapped similarly to the same coordinate value of one of the
main axes, if it is moved along an axis with the gizmo. When the elbow is next to a nozzle,
movement can also be restricted into direction of the path leg. With restricted movement, the
user can avoid a case, where piping rules must insert a new elbow to the pipeline (Figure 32,
left).

Moving of branches is implemented similarly as movement of inline components: The user se-
lects a straight pipe and gizmo appears over branch connection. Gizmo is the same as used with
inline components, and behaves similarly, but adds the next elbow of the branching pipeline
automatically to the snapping list so that 90 degree angles are easier to create.

6.4.4. Simulation configuration and visualization

As explained in design chapter (5.2.3), creating an adequate user interface component for con-
figuring simulators is difficult tasks. Therefore there is no generic implementation for that. In
section 7.1 we will show an example simulator, and present how it uses Eclipse's Extension
Point mechanisms to add its own user interface component to Process Editor.

Since visualization of equipment and flows in pipes require different amount of information, we

have divided them to two different components. Configuration of equipment visualization goes
as follows: First the user selects type of equipment and then the user interface shows al avail-

77

able animations for that type. When the user selects one of the animations, the user interface
shows a list of simulation properties that can be used for driving the animation. Property selec-
tion is based on Ontology Explorer (Section 4.3) and each simulator must provide viewpoint for

showing its data structures.

The pipe flow visualization is based on particle effects (2.5.2). Particle effects give ability to
visualize both mass flow and some other property, mapped to colour of particles. Choosing par-
ticle effects was easy: JME (6.1.1) had aready implementation of particles and using them re-
quired only little effort. Other choice would have been arrow glyphs, but implementing them
would have taken more time. Configuration of flow visualization is similar to configuration of
equipment. Difference is that the user does not select equipment type or animation, but he must
select a simulation property used for particle velocity and another simulation property used for

particle colour.

To represent precise numeric information in textual form (requirement V5), yet another user
interface component is required. This component is called monitor. Since both equipment and
flow visualization configuration rely on Ontology Explorer, it is natural to use the same method,
but here the user may select multiple simulation properties that are shown in monitors. These
configurations are stored per object type: For instance, tanks have different properties than

pipes, and the user must be able to configure monitor for both of them.

78

7. Analysis and Discussion

This chapter presents analysis of the design and the implementation, but first we will represent a
small example case of plant modelling and simulation, where we model a pulp bleaching line.
This example is used as basis for our analysis. Last we will present some thoughts about future

development ideas and challenges.

7.1. Anexampleof smulation configuration and visualization: bleaching line

As practical use case, Process Editor was used for modelling a bleaching line. Bleaching line is
part of a pulp mill, and its purpose is to improve brightness and cleanliness of pulp. In practice
bleaching is removing residue lining from the pulp: Previous stages of pulp processing remove
most of the lining, but some of it is still left there. In addition to that, previous stages dye the
pulp to dark brown because of chemicals they use for lignin removal. Kappa value is used for
describing amount of lignin, but in practice the number describes pulp’s ability to consume

permanganate, which correlates with the amount of lignin.

For this case, its own ontology had to be developed. Ontology had to contain equipment that
was needed to model the process (bleaching tower, washer, and boundary component) and map-
pings, which generated simulation model from 3D plant model. Simulation mode! itself was
divided to multiple ontologies, one describing basic flowsheet ontology, one multiphase chemis-
try ontology and one specific to this simulation case, dubbed as Vista ontology. Name Vista
comes from the name of project where multiphase chemistry simulation algorithms were devel-
oped (Brink et al. 2007).

Flowsheet ontology describes basic concepts of flowsheets: flowsheet contains nodes that have
input and output terminals, one input- and one output terminal can be connected with a stream,
and so on. Similarly multiphase chemistry ontology describes concepts needed there: multiphase
system has multiple phases, one phase has multiple species, one species has molar flow rate, and
so on. Vista ontology uses both of those ontologies to describe simulation model by defining
mixer, splitter, flow and bleacher. Mixers and splitters are used in describing internal simulation
model of washer, and it is modelled using ProConf’s diagramming tools. Bleacher has its own
type since it is simulated using special simulation code, tailored to calculate pulp behaviour in-

side bleacher. Complete description of the used algorithm isin (Rasénen 2003).

Before mapping between 3D plant model and simulation model could be created, simulation
models had to be linked to equipment models. Therefore simulation model of the washer had to

79

be modelled with diagramming tools before ontology for the test case could be created. Another
problem with mappings between models is that the 3D plant modelling ontology does not have
concepts for input and output terminals, and there is no information, how flowsheets' ports can
be matched to the nozzles. Sinceit is not possible to solve this automatically, a dialog for select-
ing port typeis shown to user when a nozzle is added to a piece of equipment. This approach is
not an optimal solution, because user interface cannot directly show the made choice afterwards.
Theactual simulation model is generated by cloning flowsheets attached to equipment, and then
linking ports in flowsheets to nozzles when the nozzles are connected to each other with pipe-
lines. As a summary, one piece of equipment is always mapped to one flowsheet, and one pipe-

lineto oneflow.

Simulator was implemented as extension to Simantics platform, and it is able to initialize simu-
lation from generated simulation model. The simulator is a steady state simulator and it calcu-
lates new values only if the user changes input values (input pulp and water). The input values
can be configured through specia inline components, which are named as boundary compo-
nents. They are inserted to pipe ends. Simulation configuration can be edited through a dialog
that contains an Ontology Explorer. The dialog was attached as part of the simulators ontology.

Visualization of simulation is in Figure 34. Pulp enters the process from the left, travels each
bleaching tower upwards, and leaves the process from the washer that is the last one on the
right. Water used in bleaching moves opposite direction, travelling from washer to washer from
the right to the left. Snapping features that were designed and implemented worked as planned.
All pipes that are connected to bleachers on the same side are the same length, because snapping
could be used so that previously routed pipe was added to snapping list. Figure also shows the
effect of routing pipe along the axes. All pipes are either horizontal or vertical, and all elbows

are 90 degree elbows.

Mass flows of the process are visualized with particle effects, and kappa number is connected to
colour of particles; red being high kappa value and blue low kappa value. Effect of the first re-
actor can bee seen right from the image: particles are red when they enter the reactor and parti-
cles coming out of the reactor are violet. Difference of mass flow rates is much harder to see,

even when pulp’s mass flow is 190 kg/s and water’ s mass flow is 295 kg/s.

The problem of particle effects shows in the figure; particles are very hard to see at large dis-
tances. Another problem, which cannot be seen in the figure, is frame rate dependency of the
particle effects that was mentioned in Section 2.5.2: When computer cannot render visualization

fast enough, not only seeing velocity of mass flow is hard, but also seeing direction of mass

80

flow is impossible. This problem was hit when visualization was used in a laptop that used
power saving mode, and its graphics processing capability was significantly reduced.

Functionality of the text based monitors appears in the figure. When the user enables monitors,
simulation data from equipment that user is pointing is shown. Monitors can be configured, and
hereit is set to show mass flow rate, pH, and Kappa value of flows.

Test case showed that implemented animation features are not enough for al cases. The simula-
tion model of reactors can provide Kappa in multiple points of the reactor. Simple colour
change animation can change the colour of the whole object, and cannot create a colour gradient
over the surface of model. Now Webomon's 2D curve and 3D tred plots were the only way to

visualize kappa value' s change inside reactors.

ate 190.0 kg/s

Figure 34: Bleaching line, Reactors (Bleaching towers) are the tall objects;, Washers
are the smaller ones. Mass flow and cleanliness of pulp is visualized with particle ef-
fects. Exact information of the simulation can beretrieved with textual monitors.

7.2. Evaluation against requirements

In this section we will check what requirements we met and what requirements we did not met,
and why that happened.

81

7.2.1. Equipment modelling and animation

When we look at the requirements for equipment modelling, we see that all high priority re-
quirements are met. Geometric models are reusable, and when a piece of equipment is inserted
into a plant, the system creates reference from the equipment to the geometric model. Whenever
the geometric model is changed, equipment models in the plant are updated. Also geometric
models can be animated and new animations can be added to models of equipment, and they are

immediately usablein visualization.

There were also two medium priority requirements for Equipment modelling: parameterisation
of geometric models and usability of modelling. The implementation contains two ways to cre-
ate parameterized geometries, and both of them have good and bad sides. Semantic presentation
of parameterization can be used with the Shape Editor, but in its current form it is difficult to
use, and it has severe restrictions for the geometry. Code based geometry gives the user com-
plete control of parameterisation, but the current implementation does not support animeating
geometric features. With some effort both of them could be made more useful, but in ideal case,
the process modeller does not have to create parameterizations himself, because the application

should contain models for all common equipment.

7.2.2. Plant moddling

All high priority requirements for equipment placing are met: new equipment can be inserted to
a plant, equipment can be translated and rotated freely, and sizing parameters can be adjusted.
Also nozzles can be inserted to equipment, and translated and rotated using either world coordi-
nate system or equipment’s coordinate system. Missing features are in equipment placing rela-
tive to each other, and custom coordinate systems are not implemented. Therefore requirement

EG6 is partially met.

Likewise all high priority requirements of piperouting are at least partially met. Routing a new
pipeline works as designed, and an existing pipeline can be edited by translating elbows, which
causes rest of the pipeline to be updated, keeping the pipeline’s structure correct. The speed of
the algorithm is faster than expected: moving an elbow that causes updates of several dozens of

path legs, because of large amount of branches, works interactively.

Pipeline routing and modification also supports snapping, which allows routing a pipe relative

to equipment and other pipes and their components. While this feature' s usability leaves things

82

to be desired, like highlighting objects that are selected for snapping, it still helps pipe routing

process alot.

Inserting and modifying inline components works as designed: precise placing of componentsis
difficult, but since the purpose was to design a user interface for process simulation, precise po-

sitioning could have made the interface more complicated to use.

There are till quirks left in modification process: ebows can be translated too close to each
other, and the end result is invalid piping. While this goes according to the design, rules are try-
ing to calculate proper angles for elbows and lengths for straight pipe parts and the result is
quite odd looking structure. Also automatic deleting of unneeded elbows is problematic, be-
cause rules that implement the functionality is not connected to the user interface in any way,
and the user may not notice deletion of an ebow, or the elbow is deleted without such intention.
Ancther problem caused by disconnection of rules and the user interface is that there is no way
to inform the user about bad design: When there is not enough space for inline components,
they are put top of each other. This distinction has also good side: Pipeline and its properties can
be modified even when the editor is closed, and structureis still kept correct.

7.2.3. Simulation and visualization

Requirement S1, which states that the ssmulation models must be generated according to 3D
plant model, is harder to evaluate. This is, because mapping between plant model and simula-
tion model must be implemented separately for each simulator. In the example case of bleaching
line (7.1), mapping worked quite well. The only problem with it was that mapping code had to
ask if anozzle is input or output nozzle, and what material passed through it. This implied that
there was no way to generate simulation model for already created plant model, at least auto-
matically.

Ancther simulation requirement was about adding simulator specific user interface components
(Requirement S2). As explained in the example case, this is possible. What has not been thought
is a case when the same plant model is linked to multiple simulation models. Currently the user
interface components of all simulators would be added to the user interface, which could con-

fuse the user.

While the animation system does not fulfil all requirements that were set to it, it provides con-

figurable environment, where the user can freely select properties that he wants to visualize and

83

how he wants to do that. Minor restriction in current implementation is colour changing anima-

tions of equipment, because they must be created separately for each equipment model.

Things that were left out are multiple active animations per object and configuring animations
per object. Both of these are somewhat complicated in sense that if they were implemented, the
user interface could get more complicated. Also automatic binding a certain animation to a cer-
tain simulation value is not possible because semantic information for that kind of binding has
not been modelled into ontologies. This helps the person who creates equipment models, be-
cause he does not have to bind animation to specific behaviour, but makes visualizations harder

to use, because the user is responsible to binding animations to simulation values.

Dynamics of flows inside pipes can be visualized (Requirement V4), but the problem is that the
user cannot create new visualizations and is bounded to existing particle-based implementation.
To cope with the performance problem that we hit in the example case, arrow style glyphs

should betested how good they are in visualizing flows.

7.3. General analysis
7.3.1. Usability

Ove traditional 2D diagramming user interfaces, which are used for creating simulation mod-
els, 3D user interfaceis more complicated to use. Among simulations model creators experience
over 3D modelling varies, and those with no previous experience seem to have a lot of problems
with the 3D interface. Just moving around a 3D-model and controlling rotation and zooming of
camera was troublesome among those who used the 3D interface for the first time. Especially
problematic was positioning of an object accuratdy because perceiving position of objects re-
lated to each other and related to world was hard. Selected objects with see through edges con-
fused users and made them think that object was front of everything, even when it was behind

other objects.

At the sametimeit is easy to seethat creating a simulation modd using 2D diagramming tool is
faster that creating the model with 3D modelling tool. But power of 3D modelling is that sizing
parameters like length of a pipe and height of a reducer, that are required by some simulators,
can be calculated using 3D model, whilein 2D interface they have to be inputted manually. This
feature can be problematic at times, because simulators approximate actual physical and chemi-
cal phenomenain the real word, sometimes requiring unrealistic input values to calculate correct

results. Then there are cases where 3D modd is required for simulation. When CFD (Computa-

tional Fluid Dynamics) simulation is combined with large scale dynamic process simulation
(Péttikangas et al. 2006), 3D geometric datais required by CFD simulation algorithms.

While plant design and layouting were not the aim, those are most common, if not the only case
where 3D modelling is currently used. Implementation is far from usable in those cases, because
it lacks functionality for modelling of structures, more precise tools for pipe routing, and so on,

but as stated in requirement analysis, it was not our aim.

7.3.2. Scalability

Typical plants may contain thousands of objects, which creates burden to visualization engine.
But at the moment, bottleneck of visualization is not the graphics side, but the Simantics envi-
ronment itself. With very simple simulation model of the example case of bleaching line (Sec-
tion 7.1), which has eight pieces of equipment and twelve pipes between them, database con-
tained over 146.000 triples. The 3D plant model does not consume many triples, at least when
compared to the simulation model. The used simulation ontology defines complex properties of
multi-phase chemistry and the simulation model of a washer takes over 7000 triples. In the ex-
ample, there are four washers and so just washers alone use almost 30.000 triples. When the
system contains just required ontologies, size of the database is 87.000 triples. With ontologies
and 3D plant model size of the database is 101.000 triples, and so the 3D model takes 14.000
triples and the simulation model with mappings about 45.000 triples. Hence in that example,
generating the simulation model increases size of the whole model four times over plain 3D
model.

While 146.000 triples is not much, it slowed down the implementation platform noticeably. The
problem is that current ProConf implementation aggressively caches everything, but never re-
leases anything. In top of that, in the current application architecture each component that ac-
cesses triple graph needs its own cache. When effects of these are added together, memory con-
sumption increases rapidly. Especially problematic is current JBoss rule engine that the current

piping system uses: it has to read the whole database in order to work.

7.4. FutureWork

One of the key issues of plant modelling is at the same time one of the key issues of Simantics
platform: scalability. As the example case of bleaching line shows, ontology based approach
creates large amount of triples even for smple models. The future vision for Simantics platform

isto use it as a user interface for Apros and Balas, and that sets great goal for scalahility: cur-

85

rently Apros has been used for simulating pulp mills and nuclear power plants, which may con-
tain hundreds, if not thousands of equipment, and many kilometres of piping. When all that is
described in ontological format, database will contain several hundred million triples. Therefore
exampletest caseisjust atiny fraction of what the system should be capable of handling.

Work for this has already been started. Unnecessary relations have been removed from LayerO,
and that reduces amount of triples needed by the models. Caching algorithms of ProConf have
been re-implemented: Now it contains only one cache and it can also reease cached triples.
There has also been discussion of packing properties, instead of storing all relations, structured
property is stored using arrays. This would reduce amount of triples especially with simulation
models. Also clustering capability for ProCore has been implemented. This allows distribution

of triples to multiple servers, reducing workload of one server.

If those means solve the scalability issue, the next limit will be graphics. Designed ProConf’s
caches will allow it to handle larger models that will fit to the computer’s memory. When a w-
hole industrial plant is modelled, that is also required from graphical editors. When user is mod-
elling the plant, it is more practical to filter unnecessary objects from the view, similarly as
SmartPlant3D does, but when whole plant level s mulation is visualized, the case is bit different.
It depends on the user and what he wants to do: he may want to simulate the whole plant but is
interested one section of it. Then similar filtering can be used, but when the user wants to just
browse the plant and see everything, dynamic loading and unloading of graphical modelsis re-

quired.

Another major issue of the platform is usability. While Simantics platform has users on multiple
levels, including devel opers and ontology creators, plant modelling is aimed at users that use the
platform and its tools to model something and the simulate it. For them the platformis currently
too complex to use. For instance when the user wants to model a plant using Process Editor and
he starts with empty installation of ProConf, first he must load ontologies to the system, and
then load all rules and start the rule engine. After that, he can create a new plant and start mod-
elling. These steps are currently too difficult for average users, and must be polished. In ideal

case user never sees that the system uses ontol ogies and semantic graph.

All in all, one sentence describes well the future of Simantics platform:

Smanticsisready when it saysit isready. — A. Villberg

86

Usability of 3D modelling, creating equipment models and designing plants is challenging task.
When design is based on real world requirements, the user interface must implement several
features that complicate the design process. On the other hand, current process simulator users
have accustomed to 2D diagramming tools, and have hard time even with the basic concepts of
3D modedling. Therefore testing Houde's method (Section 2.3.1), which restricts orientation and
movement only valid positions, could be beneficial, because it would let the user to do only
valid designs. This would set other restrictions to the system, since usually plant equipment is at
different levels, on top of structures, and therefore modelling of structures would be required.
Also current user interfaces, while they contain some good usability enhancing features, require

lot of polishing beforethey can be used in productive work.

One of the key issues in plant modelling is piping rules. The current system does not support all
components that can be found in piping systems. These include tees and other components that
have more than two connection points and components that change path leg's direction. Current
implementation took two iterations two produce: after first iteration the system did not support
reducers and could not fulfil structural requirements all the time. In this process, at least one

iteration is needed, so that piping rules can be brought to adequate level.

With the current practices (2.2.1), creating a 3D model of a plant is done in the later stages,
where multiple diagrams and simulation of the plan has already been done. Thereforeiit is hard
to say, how usable the simulation is in the design process. If usability of 3D modelling can be
brought to higher level, it is possible that 3D modelling could gain ground among process mod-
ellers.

7.4.1. Other use cases for 3D modelling and 3D Plant Modéel

Within research project, where this thesis was made, the main topic was a portable device for
maintenance workers. It was found that it would be useful to identify plant equipment from a
video stream, and then allow the maintenance worker access information about the equipment in
the picture. Few examples of information that was considered useful were maintenance history,

manual, and current status of the equipment.

Ontologies allow combining different data models. This aso applies to the 3D plant modelling
ontology, and so any kind of information can be linked to a 3D plant model, including all the
information that maintenance workers need. Because of the data model, there was no need to

take account this use case when 3D plant modelling ontology was designed.

87

Inthe first stages of the project, the equipment was identified by markers (2D barcodes) (Figure
35. right side), and when a marker was detected on the camera’s picture, information about
equipment, linked to the marker was show to user. The major problem with this approach is that
the user has to see the marker before he can get information about equipment.

Later markerless tracking was added. It detects changes in the camera’s picture and calculates
new orientation of the camera, while tracking of movement is difficult and unreliable. Attaching
position and orientation information to each marker allows augmentation component to calcu-
late the camera’s position relative to 3D model from any marker. When this is combined with
markerless tracking, the position of camera can be calculated from one marker, and after that,

the user can rotate in place and see augmented information about equipment around him.

Two different ways to use 3D plant models were identified: either augmenting 3D model to
empty hall, so that positions of equipment can be seen even when nothing has been built in the
real world (Figure 34. right side). Other way isto hide the 3D model from visualization, but use
it to detect what equipment user is looking at, and augment relevant information to the picture
(left figure). More detailed description of how augmented reality is used in ProConf can be
found in (Siltanen et al. 2007).

lana - Window Help lnz - indow Help
= B Yo =] = EE DY =]

T A

Figure 35: Augmenting 3D model to video stream (left) and augmenting information about the

process (right).

Another case that tests reusability of the 3D modelling ontology is ongoing work of creating
mechanical simulation into Simantics platform. It requires a user interface for modelling rigid
bodies and attaching them together with joints. The scenario is different to both equipment- and
plant modelling: mechanisms that were used with those, will not be sufficient for precise posi-
tioning. How well current ontologies and implementation fits to this case remains to be seen.
Ideally the same features can be shared among all tools, which reduce effort of implementation.

88

8. Conclusions

The industry uses simulators to test and verify designs. Modelling and designing applications
tend to be different than simulator applications, and that leads to manual input of design data to
simulator. Combining the design application and simulators into a single package provides
means to tackle this problem. The designer can use simulators without extra effort and without

information loss in the trandlation process.

3D industrial plant modelling has been widely accepted by the industry, and most of the new
plants are designed with some 3D modelling software. When compared to traditional 2D proc-
ess smulation tools, 3D graphics provide more lifelike view of the plant that benefits process

moddller.

We studied how 3D industrial plant modelling, process simulation and visualization could be
combined with ontologies. Ontology-based approach was proven useful mechanism to break
coupling of the user interface and the actual simulator. The visual model is separated from the
simulator model, but since both models are in the same database, simulation can be configured
through the 3D model. Therefore different simulators can be easily added without changing any-
thing in 3D modelling and visualization.

Used visualization techniques provide means to better understanding of behaviour of a simu-
lated process. When compared to traditional text based monitors and graphical trends, anima-
tions are more intuitive and faster to interpret. When more precise information is needed, older
methods are better; animations should not be seen as replacement, but as additional way to help

the designer.
Easy extendibility comes at its cost: semantic triple model takes large amount of space, and re-

quires lot of caching to work fast. This creates huge memory requirements and scalability of the
method is an issue that represents a future challenge for whole Simantics platform.

89

References

Andel, R. and Mendgen, R. 1995. Parametric design and its impact on solid modeling applica
tions. In Proceedings of the Third ACM Symposium on Solid Modeling and Applications (Salt
Lake City, Utah, United States, May 17 - 19, 1995). C. Hoffmann and J. Rossignac, Eds. SMA
'95. ACM Press, New York, NY, pp. 1-12.

Apros — The Advanced Process Simulation Environment. [Cited 10 Apr 2007]. Available at:
http://apros.vtt.fi/

Balas Process Simulator Software. [Cited 10 Apr 2007]. Available at: http://balas.vit.fi

Bier, E.A., 1986. Skitters and Jacks: Interactive 3D Positioning Tools. Proceedings of the

1986 workshop on Interactive 3D graphics, 1987, ACM Press New York, NY, USA, pp.183-
196

Bier, E.A. 1990. Snap-Dragging in Three Dimensions. Technical Report. UMI Order Num-
ber: CSD-88-416., University of California at Berkeley

Bittner, J., Wimmer, M., Piringer, H., Purgathofer, W., 2004. Coherent Hierarchical Culling:
Hardware Occlusion Queries Made Useful. Computer Graphics Forum (Grenoble, France, Sep-
tember, 2004)) EUROGRAPHICS 2004. Vol. 23, Num. 3. pp. 615-624.

Blender [Cited 10 Apr 2007]. Available at: http://www.blender.org

Braunschweig B., Gani, R., 2002. Software architectures and tools for computer aided process
engineering. — (Computer aided chemical engineering, 11), Elsevier, Amsterdam, Netherlands,
700 pages. ISBN: 0-444-50827-9.

Brink, A. Lindberg, D., Hupa, M., Louhenkilpi, S., Wang, S., Fabritius, T., Riipi, J., Harkki, J.,
Kangas, P., Koukkari, P., Lilja, R., Pajarre, R., Penttila K., Kankkunen A., Jarvinen, M., Fogel-
holm, C-J.,, Bergstrom, F., Eriksson, K. 2007. Multi-phase Chemistry in Process Simulation
MASITO4 (VISTA). MAS Technology Programme 2005-2009, Yearbook 2007. Technology
Review. Tekes. To be published in 2007.

90

Chen, M., Mountford, S. J., and Sellen, A. 1988. A study in interactive 3-D rotation using 2-D
control devices. In Proceedings of the 15th Annual Conference on Computer Graphics and in-
teractive Techniques R. J. Beach, Ed. SIGGRAPH '88. ACM Press, New York, NY, pp. 121-
129.

Decker, S., Mdnik, S., van Harmden, F., Fensel, D., Klein, M., Broekstra, J., Erdmann, D. and
Horrocks, I. 2000. The Semantic Web: The Roles of XML and RDF. In |EEE Internet Comput-
ing. Vol. 4, Num. 5, pp. 63-74.

TheDARPA Agent Markup Language (DAML). [Cited 15 Apr 2007]. Available at:
http://www.daml.org/

Eclipse — an open deve opment platform. [Cited 10 Mar 2007]. Available at:

http://www.eclipse.org/
Guarino, N. and Giaretta. P., 1995. Ontologies and Knowledge Bases: Towards a Terminol ogi-
cal Clarification. In Towards Very Large Knowledge Bases: Knowledge Building and Know-

edge Sharing. pp. 25-32

Guarino, N. 1998. Forma Ontology and Information Systems. Proceedings of the 1st Interna-
tional Conference June 6-8, 1998, Trento, Italy. 1st. 10S Press. pp. 3-15.

Gruber, T. R. 1993. A trandation approach to portable ontology specifications. In Knowledge
Acquisition. Vol. 5, Number 2, (1993), pp. 199-220.

Gruber, T. R. 1995. Toward principles for the design of ontologies used for knowledge sharing.
Int. J. Hum.-Comput. Sud. 43, 5-6 (Dec. 1995), pp. 907-928.

Gruninger, M. and Lee, J. 2002. Ontology: Applications and Design. In Communications of the
ACM. Val. 45, No. 2. February 2002. pp 39-41.

Hand, C., 1997. A Survey of 3D Interaction Techniques. Computer Graphics Forum, Vol.
16, Number 5, pp. 269-281, Blackwell Synergy, 1997.

Hansen, C.D., Johnson, C.R., 2005. The visualization handbook. Elsevier, Burlington, MA. 962
pages. |SBN: 0-12-387582-X

91

Henriksen, K., Sporring, J., Hornbaek, K, 2004. Virtual Trackballs Revisited. IEEE Transac-
tions on Visualization and Computer Graphics,vol. 10, no. 2, March/April, 2004 , pp. 206-216.

Hinckley, K., Tullio, J., Pausch, R., Proffitt, D., and Kassdl, N. 1997. Usability analysis of 3D
rotation techniques. In Proceedings of the 10th Annual ACM Symposium on User interface
Software and Technology (Banff, Alberta, Canada, October 14 - 17, 1997). UIST '97. ACM
Press, New York, NY, pp. 1-10.

Hoffmann, C.M, 1989, Geometric and Solid Modding: An Introduction, Morgan Kaufmann,
San Mateo, CA, 1989, 340 pages. [Cited 10 Mar 2007]. Available at:
http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html

Hoffman, C. 1994. Semantic Problems of Generative, Constraint-Based Design. in "Pa-
rametric and Variational Design”, Hoschek, J. and Dankwort, W. (eds.), Teubner Verlag, 1994

Houde, S. 1992. Iterative design of an interface for easy 3-D direct manipulation. In Proceed-
ings of the SSGCHI Conference on Human Factors in Computing Systems (Monterey, Califor-
nia, United States, May 03 - 07, 1992). P. Bauersfeld, J. Bennett, and G. Lynch, Eds. CHI '92.
ACM Press, New York, NY, pp. 135-142.

IGES, The Initial Graphics Exchange Specification. [Cited 12 Mar 2007]. Available at:
http://www.nist.gov/iges/

IGES Preservation Society. [Cited 12 Mar 2006]. Available at: http://www.igesbx.org/

Intergraph’'s SmartPlant® 3D product web page. [Cited 22 Nov 2006]. Avallable at:
http://www.intergraph.com/smartplant/3d/default.asp

ISO IS 15926-2:2003: Industrial automation systems and integration — Integration of life-cycle
data for oil and gas production facilities — Part2: Data Model, 2003. International Organization
for Standardization, Geneva, Switzerland.

ISO IS 15926-4:2004: Industrial automation systems and integration — Integration of life-cycle
data for oil and gas production facilities — Part4: Initial Reference Data, 2004. International Or-

ganization for Standardization, Geneva, Switzerland.

jMonkeyEngine web page. [Cited 20 Nov 2006]. Available at: http://www.jmonkeyengine.com

92

Kalgjainen, T. and Luukkainen, M. 2005. Webmon's User’ s manual.

Kalogerakis, E., Christodoulakis, S., Moumoutzis, N., 2006. Coupling Ontologies with
Graphics Content for Knowledge Driven Visualization. Proceedings of the IEEE Virtual
Reality Conference 2006 (IEEE VR '06), pp.43-50, Virginia, USA, 25-28 March 2006

Kemmerer, S.J. 2001. Initial Graphics Exchange Specifications. In A Century of Excellence in
Measurements, Standards, and Technology - A Chronicle of Selected NBS/NIST Publications,
1901 - 2000, David L. Lide, Editor; NIST Special Publication 958, January 2001

Kerlow, 1.W., 2004. The art of 3D computer animation and effects. 3" edition. John Wiley &
Sons Inc., Hoboken, New Jersey. 452 pages. |SBN: 0-471-43036-6

KnowPulp 3.0 Learning Environment for Chemical Pulping and Automation. Prowledge OY &
VTT Industrial Systems. [Cited 10 Mar 2007]. Available at: http://www.prowledge com/

Mackinlay, J. D., Card, S. K., and Robertson, G. G. 1990. Rapid controlled movement through a
virtual 3D workspace. In Proceedings of the 17th Annual Conference on Computer Graphics
and interactive Techniques (Dallas, TX, USA). SSIGGRAPH '90. ACM Press, New York, NY,
171-176.

Manola F. and Miller. E., 2004. RDF Primer. W3C Recommendation 10 February 2004. [Cited
15 Apr 2007]. Available at: http://www.w3.org/TR/rdf-primer/

McAffer, J. and Lemieux, JM., 2006. Eclipse Rich Client Platform: Designing, Coding and
Packaging Java Applications. Addison-Wesley, 504 pages. ISBN: 0-321-33461-2

McGuinness, D.L. and van Harmelen, F. 2004. OWL Web Ontology Language Overview. W3C
Recommendation 10 February 2004. [Cited 15 Apr 2007]. Available at:

http://www.w3.org/TR/owl-features/

Nayyar, M.L., 2000. Piping Handbook 7th Edition. McGraw-Hill ISBN 0-07-047106-1

93

Nielson, G.M., Olsen, D.R, 1986. Direct Manipulation Techniques for 3D Objects Using
2D Locator Devices Proceedings of the 1986 workshop on Interactive 3D graphics, pp.175-
182, 1987, ACM Press New York, NY, USA

OPC Foundation [Cited 10 Mar 2007]. Available at: http://www.opcfoundation.org/
Open CASCADE Technology, 3D modeling & numerical simulation. [Cited 10 Mar 2007].
Availableat: http://www.opencascade.org/

Parent, R., 2002. Computer Animation: Algorithms and Techniques. Morgan Kaufmann., San
Francisco, CA. 527 pages. ISBN: 1-55860-579-7

Park, M., 2005. Ontology-based Customizable 3D Modeling for Simulation. PhD Thesis. Uni-

versity of Florida.

Phillips, C. B. and Badler, N. 1. 1988. JACK: a toolkit for manipulating articulated figures. In
Proceedings of the 1t Annual ACM SIGGRAPH Symposium on User interface Software (Al-
berta, Canada, October 17 - 19, 1988). UIST '88. ACM Press, New York, NY, 221-229.

Phillips, C. B., Badler, N. I., and Granieri, J. 1992. Automatic viewing control for 3D direct
manipulation. In Proceedings of the 1992 Symposium on interactive 3D Graphics (Cambridge,
Massachusetts, United States). SI3D '92. ACM Press, New York, NY, 71-74.

Posada, J., Toro, C., Wundark, S., Stork, A., 2005. Ontology supported semantic simplification
of large data sets of industrial plant CAD models for design review visualization. Lecture Notes
in Computer Science v 3683 LNAI, Knowledge-Based Intelligent Information and Engineering
Systems - 9th International Conference, KES 2005, Proceedings, 2005, pp. 184-190

Roche, C., 2003. Ontology: a survey. Proceedings of the 8th Symposium on Automated Sys-
tems Based on Human Skill and Knowledge. IFAC, Goteborg, Sweden.

Pratt, M.J., 2001. Introduction to 1SO 10303 — the STEP Standard for Product Data Exchange.

ASME Journal of Computing and Information Science in Engineering. March 2001. pp. 102-
103.

94

Pattikangas T., Manninen M., Ilvonen M., Huhtanen,R., Luukkainen M. 2006. Symbiosis be-
tween computational fluid dynamics and plant models. Research Report 2006, VTT. 32

Quick, J. M., Zhu, C., Wang, H., Song, M., and Mller-Wittig, W. 2004. Building a virtual fac-
tory. In Proceedings of the 2nd international Conference on Computer Graphics and interactive
Techniques in Australasia and South East Asa (Singapore, June 15 - 18, 2004). S. N. Spencer,
Ed. GRAPHITE '04. ACM Press, New York, NY, 199-203.

Rohrer, M. W. 2000. Seeing is believing: the importance of visualization in manufacturing
simulation. In Proceedings of the 32nd Conference on Winter Smulation (Orlando, Florida, De-
cember 10 - 13, 2000). Winter Simulation Conference. Society for Computer Simulation Inter-
national, San Diego, CA, 1211-1216.

Rosenblum, L.,Earnshaw, R.A., Encarnacao, J., Hagen, H., Kaufman, A., Klimenko, S,
Nielson, G., Post, F., Thalmann, D., 1994. Scientific Visualization. Academic Press LTD, Lon-
don. 532 pages. ISBN: 0-12-227742-2

Résanen, E., 2003. Modelling ion exchange and flow in pulp suspensions. PhD (Tech.) Thesis.
VTT Processes. Espoo. 62 p. + app. 111p. VTT Publications : 495.

SFS-Handbook 123 Pipe Classes. 2000. Finnish Standards Association. Helsinki, Finland.

Shoemake, K. 1992. ARCBALL: a user interface for specifying three-dimensional orientation
using a mouse. In Proceedings of the Conference on Graphics interface '92 (Vancouver, British
Columbia, Canada). K. S. Booth and A. Fournier, Eds. Morgan Kaufmann Publishers, San
Francisco, CA, 151-156.

Siltanen, P., Karhela, T., Woodward, C., Savioja P. 2007. Augmented Reality for Plant Lifecy-
cle Management. To be presented in 13" International Conference on Concurrent Enterprising.

(ICE 2007). Sophia-Antipalis, France. 4-6 June, 2007.

Smith, B. 2003. Ontology. In Blackwell guide to the Philosophy in Computing and Information.
Oxford: Blackwell. Pages 155-166.

Tan, D. S, Robertson, G. G., and Czerwinski, M. 2001. Exploring 3D navigation: combining
speed-coupled flying with orbiting. In Proceedings of the SGCHI Conference on Human Fac-

95

tors in Computing Systems (Seattle, Washington, United States). CHI '01. ACM Press, New
York, NY, 418-425.

Uschold, M., Callahan, S., 2004. Semantics-Based Virtual Product Models: Unifying Product
and Knowledge Data. NASA Workshop on the Knowledge Integrating Virtual Iron Bird.

http://ic.arc.nasa.gov/vib/

Uschold, M. and Gruninger, M. 1996. Ontologies: principles, methods, and applications, In
Knowledge Engineering Review, 11(2), 93--155, (1996).

West, M., 2004. Some Industrial Experiences in the Development and Use of Ontologies.
EKAWO04 Wor kshop on Core Ontologies.

X3D Specifications. [Cited 10 Mar 2007]. Available at:
http://www.web3d.org/x3d/specifications/

Zdeznik, R. C., Herndon, K. P., Robbins, D. C., Huang, N., Meyer, T., Parker, N., and Hughes,
J. F. 1993. An interactive 3D toolkit for constructing 3D widgets. In Proceedings of the 20th
Annual Conference on Computer Graphics and interactive Techniques SIGGRAPH '93. ACM
Press, New York, NY, 81-84.

96

	Introduction
	Background
	Requirement analysis
	Implementation platform
	Design
	Implementation
	Analysis and Discussion
	Conclusions

